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Figure 1. The Cayley cubic arises
as a representation space associated
to the thrice-punctured sphere and
the special linear group of 2 × 2
matrices.

Background. This project is concerned with studying a fam-
ily of algebro-geometric objects called representation spaces.
These are spaces associated to a finitely generated group and
a reductive algebraic group. An important class of finitely
generated groups are those arising as fundamental groups of
surfaces. For this class, the resulting representation spaces
are related to many topics in mathematics and physics. These
include the Yang-Mills equations, Hitchin’s equations, the geo-
metric Langlands correspondence, the 𝑃 = 𝑊 conjecture and
mirror symmetry [Hau13,BPGPNT14].

In general, representation spaces are not well-understood.
However, much is known when one considers representation
spaces arising from fundamental groups of punctured surfaces
and reductive groups of type 𝐴, such as the general linear
groups. This is largely due to the seminal work of Hausel–
Letellier–Rodriguez-Villegas [HRV08, HLRV11] and subse-
quent work [Let15, Mel18, Bal23, LRV23]. In this project,
we consider the same fundamental groups, but we do not re-
strict ourselves to reductive groups of type A. The novelty of
this project is our type-independent approach which handles
all types simultaneously. To our knowledge, only three papers
deal with representation spaces associated to reductive groups
outside of type 𝐴 [Cam17,BK22,KNP23]. In light of the Lang-
lands program and the relationships with the aforementioned
areas in mathematics and physics, it is crucial to understand
the situation for all types.

The goal of this project is to understand the topology and geometry of these representation spaces. In particular,
we investigate their cohomology, obtaining useful topological invariants such as dimension, Euler characteristic, and
the number of irreducible components. We access these invariants through techniques of arithmetic geometry. In
particular, we count points of representation spaces over finite fields.

Our work relies on the Weil conjectures, a jewel of 20th century mathematics. Their statements are complicated,
but they teach us an important philosophy: cohomological information can be obtained by counting points over finite
fields. A concrete manifestation of this philosophy is a theorem of Katz [HRV08, Theorem 6.1.2]. This result tells us
that, when point-counting over finite fields, it is fruitful if one can conclude a polynomial relationship between the size
𝑞 of the finite field and the number of points of the representation space over that finite field.

A formula first revealed by Frobenius links the number of such points to the represention theory of finite reductive
groups. This provides a clear strategy to analyse the topology of representation spaces: use the representation theory of
finite reductive groups to show that Frobenius’ formula is a polynomial in 𝑞, and compute features of this polymomial.

Representation spaces. Fix a surface Σ and a reductive algebraic group 𝐺. Denote by 𝜋1 (Σ) the fundamental group
of the surface. The representation spaces in this project arise as spaces of homomorphisms 𝜋1 (Σ) → 𝐺. Such
a homomorphism is determined by the image of its generators, subject to the requirement that the chosen images
satisfy the relations of the fundamental group. Algebraic groups carry the structure of a variety, so this space of
homomorphisms does too, since we can identify a homomorphism with the images that determine it. For instance, if Σ
is the torus, then 𝜋1 (Σ) ' ℤ ×ℤ ' 〈𝑎, 𝑏 | 𝑎𝑏 = 𝑏𝑎〉 and a homomorphism 𝜋1 (Σ) → 𝐺 amounts to a choice of images
�̃�, �̃� ∈ 𝐺 such that �̃��̃� = �̃��̃�. Therefore Hom(𝜋1 (Σ), 𝐺) is identified with the subvariety {(𝑔, ℎ) ∈ 𝐺2 | 𝑔ℎ = ℎ𝑔} ⊆ 𝐺2.

Recall from representation theory that two representations are considered equivalent if they are conjugate. The
identification Hom(𝜋1 (Σ), 𝐺) ⊆ 𝐺 × · · · ×𝐺 means that Hom(𝜋1 (Σ), 𝐺) admits an action of 𝐺 given by simultaneous
conjugation in every entry. This allows us to consider the collection of orbits Hom(𝜋1 (Σ), 𝐺)/𝐺, which one may
interpret as the collection of inequivalent representations. The structure of this orbit space is subtle, since it does not
necessarily inherit a desirable algebro-geometric structure from 𝐺. The problem with the naive quotient is that, in
the quotient topology, singleton sets are not necessarily closed, so the quotient topology is not necessarily Hausdorff
[BPGPNT14, §3.2.1].
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There are two common ways to obtain a space of orbits that admits a desirable algebro-geometric structure:
(i) Consider the geometric-invariant-theory (GIT) quotient Hom(𝜋1 (Σ), 𝐺)//𝐺. Historically, this was the first

solution to the orbit-space problem, due to Mumford. To solve this problem, the GIT quotient only consists of
the closed orbits, which can be given desirable structure [CF12, §3.1].

(ii) Consider the quotient stack [Hom(𝜋1 (Σ), 𝐺)/𝐺]. Stacks are a higher algebraic object defined in the wake of
Grothendieck. These solve our quotient problem by keeping track of more data than the naive quotient does, such
as the automorphisms of points. In a sense, the stacky quotient is the ‘correct’ quotient, but its definition requires
more work [Ach21, §6.8].

The GIT quotient Hom(𝜋1 (Σ), 𝐺)//𝐺 is called the character variety and has a close relationship to the problems
from other areas stated earlier. However, in general, its point-count is difficult. In constrast, the stacky quotient
[Hom(𝜋1 (Σ), 𝐺)/𝐺] is called the character stack and has essentially the same as the point-count of Hom(𝜋1 (Σ), 𝐺).
In general, this point-count is still difficult, but it is easier than the point-count of the character variety. For these
reasons, we will focus on the character stack’s point-count, with a view towards relating it to the character variety’s
point-count.

Counting points. Our method of understanding the topology of representations is to compute their 𝐸-polynomials.1
These are polynomials that encode the geometric structure of representation spaces (specifically, the coefficients are
dimensions of certain cohomology groups). From an 𝐸-polynomial, we can extract topological information by reading
features of the polynomial. We omit the definition of 𝐸-polynomials [HRV08, Definition 2.1.4], but emphasise that
the following result allows us to compute 𝐸-polynomials without appealing to their definition.

Theorem 1 (Theorem 6.1.2.3 of [HRV08]). Let 𝑋 be a variety defined by polynomials with integer coefficients, and
denote by 𝔽𝑞 the finite field with 𝑞 elements. Suppose that |𝑋 (𝔽𝑞) | is given by a polynomial 𝑃𝑋 (𝑞) ∈ ℂ[𝑞]. Then
𝑃𝑋 (𝑞) ∈ ℤ[𝑞] and this is the 𝐸-polynomial of 𝑋 , denoted 𝐸 (𝑋; 𝑞).

This tells us that if we can conclude polynomiality of |𝑋 (𝔽𝑞) |, then we immediately obtain the 𝐸-polynomial without
appealing to its definition. Once obtained, we use this polynomial to access topological information. For example,

(i) The dimension of 𝑋 is the degree of 𝐸 (𝑋; 𝑞),
(ii) The Euler characteristic of 𝑋 is given by 𝐸 (𝑋; 1), and
(iii) The number of (maximal dimension) irreducible components of 𝑋 is the leading coefficient of 𝐸 (𝑋; 𝑞).

Frobenius’ formula. In general, counting points over finite fields is not an easy problem. However, we have restricted
ourselves to punctured orientable surfaces and, in this case, there is a formula due to Frobenius telling us how to
point-count. Suppose that Σ is a once-punctured orientable surface with genus 𝑔 ≥ 1. Through Seifert–Van Kampen’s
theorem, one sees that this has the fundamental group

𝜋1 (Σ) ' 〈𝑎1, 𝑏1, . . . , 𝑎𝑔, 𝑏𝑔, 𝑐 | [𝑎1, 𝑏1] · · · [𝑎𝑔, 𝑏𝑔]𝑐 = 1〉.
Furthermore, suppose that 𝐺 is a reductive algebraic group over 𝔽𝑞 . Assume that the loop 𝑐 around the puncture is

mapped into a fixed conjugacy class 𝐶 ⊆ 𝐺. In other words, consider the representation space
𝑅 := { 𝑓 ∈ Hom(𝜋1 (Σ), 𝐺) | 𝑓 (𝑐) ∈ 𝐶}.

We also quietly assume that the centraliser of 𝐶 in 𝐺 is connected; we will soon specialise 𝐺 and 𝐶 so that this
is always the case. Since homomorphisms on 𝜋1 (Σ) are determined by the images of the generators, we make the
identification

𝑅 ' {(𝑋1, 𝑌1, . . . , 𝑋𝑔, 𝑌𝑔, 𝑍) ∈ 𝐺2𝑔 × 𝐶 | [𝑋1, 𝑌1] · · · [𝑋𝑔, 𝑌𝑔]𝑍 = 1} ⊆ 𝐺2𝑔+1.

Then Frobenius’ formula [HLRV11, Proposition 3.1.4] tells us that 𝑅 has point-count

|𝑅(𝔽𝑞) |
|𝐺 (𝔽𝑞) |

=
∑︁

𝜒∈Irr(𝐺 (𝔽𝑞 ) )

( |𝐺 (𝔽𝑞) |
𝜒(1)

)2𝑔−2 𝜒(𝐶 (𝔽𝑞))
𝜒(1) |𝐶 (𝔽𝑞) |,

where Irr(𝐺 (𝔽𝑞)) is the set of irreducible complex characters of the finite group 𝐺 (𝔽𝑞). We see that evaluating
Frobenius’ formula is a problem in the world of the representation theory of finite reductive groups. Note that we did
not need to impose reductivity on the algebraic group 𝐺 to get this far. However, if we were not in the reductive setting,
then the task of understanding Irr(𝐺 (𝔽𝑞)) and evaluating Frobenius’ formula becomes out of our reach.

1Also known as Serre polynomials.
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Results. We concern ourselves with character stack 𝔛 := [𝑅/(𝐺/𝑍)] when 𝐶 is a strongly regular, split and generic
conjugacy class. Here, 𝐶 being strongly regular and split means that its centraliser is a split maximal torus 𝑇 [Ste65],
and 𝑍 is the centre of 𝐺. It is well-known that |𝔛(𝔽𝑞) |/|𝑍 (𝔽𝑞) | = |𝑅(𝔽𝑞) |/|𝐺 (𝔽𝑞) | [Beh93, Lemma 2.5.1], meaning
we can point-count 𝔛 using Frobenius’ formula. Our main result is the following:
Theorem 2. The function 𝑓 (𝑞) := |𝔛(𝔽𝑞) | is a polynomial in 𝑞 with the following features:

(i) The degree of 𝑓 is (2𝑔 − 1) dim𝐺 + 2 dim 𝑍 − dim𝑇 .
(ii) The leading coefficient of 𝑓 is the number of connected components of the centre of the Langlands dual group.
(iii) If dim 𝑍 > 0 or 𝑔 > 1 then 𝑓 (1) = 0.
(iv) The coefficients of 𝑓 are palindromic, in the sense that 𝑓 (1/𝑞) = 𝑞− deg 𝑓 𝑓 (𝑞).
Corollary 3. The 𝐸-polynomial 𝐸 (𝔛; 𝑞) is equal to 𝑓 (𝑞). Moreover,

(i) The dimension of the character stack is (2𝑔 − 1) dim𝐺 + 2 dim 𝑍 − dim𝑇 .
(ii) The character stack and the centre of the Langlands dual group have the same number of connected components.
(iii) The Euler characteristic of the character stack is 0, unless dim 𝑍 = 0 and 𝑔 = 1.
(iv) The character stack exhibits a ‘curious’ Poincaré duality, in the sense of [HRV08,HLRV11].
Lusztig’s Jordan decomposition. Our proof of Theorem 2 is centered around a remarkable decomposition of
Irr(𝐺 (𝔽𝑞)) due to Lusztig. We shall take some time to define the objects involved. We will also discuss the his-
tory of these objects, in order to highlight their conceptual advantages and the significance of the decomposition.

Before the 1970s, the problem of finding irreducible 𝐺 (𝔽𝑞)-characters, let alone the character values themselves,
was far from solved. At the time, only the general linear groups GL𝑛 (𝔽𝑞) and symplectic group Sp4 (𝔽𝑞) had well-
understood character tables [Gre55,Sri68]. From these tables, Ian Macdonald conjectured that there should exist a map
from ‘general position’ characters of maximal tori to Irr(𝐺 (𝔽𝑞)). Roughly, maximal tori are subgroups of 𝐺 (𝔽𝑞) that
are isomorphic to products of multiplicative groups of finite fields, and there are no mysteries about their representation
theory. Macdonald’s conjectures were solved by Deligne–Lusztig in their seminal 1976 paper [DL76]. Their main
idea was their Deligne–Lusztig characters which ellucidate the representation theory of finite groups to this day.

The inspiration for Deligne–Lusztig characters was a construction due to Fields medalist Vladimir Drinfeld. He
had explicitly constructed a mysterious family of irreducible SL2 (𝔽𝑞)-representations. At the time, only the character
values of these irreducible representations were known, and Drinfeld’s work explained how to construct the actual
representations which realised those characters. These representations were found inside the so-called ℓ-adic cohomol-
ogy group 𝐻1

𝑐 (𝐶,ℚℓ) of the curve 𝐶 : 𝑥𝑦𝑞 − 𝑦𝑥𝑞 = 1, now known as the Drinfeld curve [Bon11]. Remarkably, such
cohomology groups were in their infancy at the time, having been developed only in the previous decade by Fields
medalists Alexander Grothendieck in order to prove the Weil conjectures.2

A Deligne–Lusztig character 𝑅𝐺
𝑇
(\) is a virtual character associated to a maximal torus 𝑇 ⊆ 𝐺 and a character

\ ∈ Irr(𝑇 (𝔽𝑞)). By a virtual character, we mean a ℤ-linear combination of actual characters. The Deligne–Lusztig
characters satisfy many important properties. One evidently helpful property is that all irreducible 𝐺 (𝔽𝑞)-characters
appear in some Deligne-Lusztig character. That is, for any 𝜒 ∈ Irr(𝐺 (𝔽𝑞)), there is some (𝑇, \) such that the
multiplicity of 𝜒 in 𝑅𝐺

𝑇
(\) is non-zero [GM20, Corollary 2.2.19].

An important subcollection of Irr(𝐺 (𝔽𝑞)) are the so-called unipotent characters, which are those irreducible
characters which appear in 𝑅𝐺

𝑇
(1𝑇 ) for some 𝑇 . A surprising theorem of Lusztig tells us that unipotent characters are

independent of the base field, in the sense that they are in bijection with a set only depending on the Weyl group of
𝐺 [GM20, Theorem 2.4.1]. Even more can be said when 𝐺 has connected centre. In this case, Lusztig tells us that
semisimple conjugacy classes and unipotent characters of smaller groups can be used to parameterise the collection of
irreducible 𝐺 (𝔽𝑞)-characters. This is Lusztig’s Jordan decomposition of Irr(𝐺 (𝔽𝑞)).
Theorem 4 (Theorem 4.23 of [Lus84]). Suppose that 𝐺 has connected centre. Let 𝐺∨ be the Langlands dual of 𝐺
and Uch(𝐺∨𝑥 (𝔽𝑞)) be the set of unipotent characters of the centraliser of 𝑥 ∈ 𝐺∨ (𝔽𝑞). Then there is a bijection

Irr(𝐺 (𝔽𝑞)) ←→
⊔

[𝑥 ]⊆𝐺∨ (𝔽𝑞 )
𝑥 semisimple

Uch(𝐺∨𝑥 (𝔽𝑞)).

Furthermore, if 𝜒 ∈ Irr(𝐺 (𝔽𝑞)) is paired with 𝜌 ∈ Uch(𝐺∨𝑥 (𝔽𝑞)), then the degrees of 𝜒 and 𝜌 are related by
𝜒(1) = 𝜌(1) [𝐺∨ (𝔽𝑞) : 𝐺∨𝑥 (𝔽𝑞)] 𝑝′ .

2Even more remarkably, Drinfeld was only 19 years old at the time of this work [Lus14].
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𝐺-types. We frame the point-count of representation spaces in terms of 𝐺-types, a new definition in the spirit of
[HRV08,HLRV11,Mer15,Cam17]. Our types generalise previously defined notions of types, the first of which being
due to Green [Gre55]. This frame of types aids in the task of obtaining a polynomial in 𝑞 for two reasons: 𝐺-types
do not depend on 𝑞, and each irreducible 𝐺 (𝔽𝑞)-character gives rise to a 𝐺∨-type. These facts allow us to carefully
manipulate the dependence on 𝑞 in Frobenius’ formula.

Our proposed definition of types is motivated by the following assignment. If 𝜒 is paired with ( [𝑥], 𝜌) via Lusztig’s
Jordan decomposition, then consider the centraliser 𝐺∨𝑥 . Since 𝐺 has connected centre, the centraliser is a connected
reductive subgroup of maximal rank. Carter tells us that this centraliser gives rise to a so-called genus ( [Ψ], [𝑤]),
where Ψ is the root system of 𝐺∨𝑥 and [𝑤] is the conjugacy class of 𝑁𝑊 (𝑊Ψ)/𝑊Ψ which describes the centraliser’s
rational structure [Car78].3 Here, 𝑊 is the Weyl group of 𝐺 and 𝑊Ψ is the Weyl group of Ψ. Then the aforementioned
assignment is

𝜒 ↦→ ([Ψ], [𝑤], 𝜌).
We propose the following definition of a 𝐺-type:

Definition 5. Suppose that 𝐺 has root system Φ and Weyl group 𝑊 . A 𝐺-type is a triple 𝜏 = ( [Ψ], [𝑤], 𝜌), where
(i) [Ψ] is the 𝑊-orbit of a closed subsystem Ψ of Φ,
(ii) [𝑤] is a conjugacy class in 𝑁𝑊 (𝑊Ψ)/𝑊Ψ, and
(iii) 𝜌 is a unipotent representation of 𝐺 [Ψ], [𝑤 ] (𝔽𝑞), the group with root system [Ψ] and rational structure [𝑤].

The collection of all 𝐺-types is denoted Type(𝐺), which is independent of 𝑞.4 The assignment 𝜒 ↦→ ([Ψ], [𝑤], 𝜌)
gives rise to a well-defined map Irr(𝐺 (𝔽𝑞)) → Type(𝐺∨). The collection of irreducible 𝐺 (𝔽𝑞)-characters with type 𝜏

is denoted Irr(𝐺 (𝔽𝑞))𝜏 . For example, the four GL2-types are
𝜏1 = ( [𝐴1], [1], triv), 𝜏2 = ( [𝐴1], [1], St), 𝜏3 = ( [∅], [1], triv) and 𝜏4 ( [∅], [𝑤], triv),

where St is the Steinberg representation for GL2 (𝔽𝑞), and 𝑤 is the non-trivial element of 𝑁𝑊 (𝑊∅)/𝑊∅ ' 𝑆2. Noting
that GL∨2 = GL2, the above types arise from the following GL2 (𝔽𝑞)-characters:

(i) 𝜏1 arises from characters of the form 𝑈𝛼 : GL2 (𝔽𝑞)
det−−→ 𝔽 ×𝑞

𝛼−→ ℂ× for some 𝛼 ∈ Irr(𝔽 ×𝑞 ).
(ii) 𝜏2 arises from characters of the form St ⊗ 𝑈𝛼.
(iii) 𝜏3 arises from the irreducible principle series characters.
(iv) 𝜏4 arises from the irreducible cuspidal characters.

Order polynomials and degree polynomials. To point-count later, we need order and degree polynomials, which
come from well-known order and degree formulas [GM20, Theorem 1.6.7, Definition 2.3.25]. Given 𝜒 ∈ Irr(𝐺 (𝔽𝑞)),
the order and degree polynomials ‖𝐺‖ and 𝔻𝜒 are constructed to satisfy ‖𝐺‖(𝑞) = |𝐺 (𝔽𝑞) | and 𝔻𝜒 (𝑞) = 𝜒(1),
indicating their use in point-counting (cf. Frobenius’ formula). For instance, if 𝐺 = GL𝑛, then

‖𝐺‖(𝑞) = |GL𝑛 (𝔽𝑞) | = 𝑞(
𝑛
2) (𝑞 − 1)𝑛

∑︁
𝑤∈𝑆𝑛

𝑞length(𝑤) ,

and if 𝜒 = Ind𝐺 (𝔽𝑞 )
𝐵(𝔽𝑞 ) (\) is an irreducible principle series character of GL𝑛 (𝔽𝑞), then

𝔻𝜒 (𝑞) = 𝜒(1) =
|𝐺 (𝔽𝑞) |
|𝐵(𝔽𝑞) |

dim \ =
∑︁
𝑤∈𝑆𝑛

𝑞length(𝑤) .

Using the degree formula in Theorem 4, we find that 𝔻𝜒 actually only depends on the type of 𝜒:

Proposition 6. The degree of 𝜒 is determined by its type 𝜏, so we write 𝜏(1) for this common degree. Furthermore,
the degree polynomial of 𝜒 is determined by its type, so we write 𝔻𝜏 for this common polynomial.

This follows from observing that if ( [Ψ], [𝑤], 𝜌) is the type of 𝜒 then this completely determines the value
𝜌(1) [𝐺∨ (𝔽𝑞) : 𝐺∨[Ψ], [𝑤 ] (𝔽𝑞)] 𝑝′ , which is exactly 𝜒(1), by Theorem 4. Therefore, if 𝜒 and 𝜒′ have the same type,
then 𝜒(1) = 𝜒′ (1). But 𝔻𝜒 (𝑞) = 𝜒(1), meaning that the polynomial 𝔻𝜒 − 𝔻𝜒′ has infinitely many roots and must be
zero. Therefore, so long as 𝜏 arises from some character, 𝔻𝜏 is well-defined.

3For example, up to GL2 (𝔽𝑞 )-conjugation, there are two maximal tori in GL2 (𝔽𝑞 ) and they both have empty root systems, but they are
distinguished by a choice of conjugacy class in 𝑁𝑊 (𝑊∅ )/𝑊∅ ' 𝑆2.

4We are omitting light assumptions on 𝑞. For those interested, we assume that 𝑞 is a power of a prime which is good for 𝐺, in the sense of
[Car93, §1.14].
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Point-counting with 𝐺-types. Given 𝜏 ∈ Type(𝐺∨) and 𝑆 ∈ 𝐺 (𝔽𝑞), define the functions

𝐻𝜏 (𝑞) :=
‖𝐺‖(𝑞)
𝔻𝜏 (𝑞)

and 𝑆𝜏 (𝑞) :=
∑︁

𝜒∈Irr(𝐺 (𝔽𝑞 ) )𝜏

𝜒(𝑆).

We call the 𝑆𝜏 character sums. In this notation, we have

|𝔛(𝔽𝑞) | =
|𝑅(𝔽𝑞) |
| (𝐺/𝑍) (𝔽𝑞) |

=
|𝑍 (𝔽𝑞) |
|𝑇 (𝔽𝑞) |

∑︁
𝜒∈Irr(𝐺 (𝔽𝑞 ) )

( |𝐺 (𝔽𝑞) |
𝜒(1)

)2𝑔−1
𝜒(𝑆) = ‖𝑍 ‖(𝑞)‖𝑇 ‖(𝑞)

∑︁
𝜏∈Type(𝐺∨ )

𝐻𝜏 (𝑞)2𝑔−1𝑆𝜏 (𝑞).

This expression yields some amount of clarity when point-counting. For instance, by [GM20, Remark 2.3.27], we
know that 𝔻𝜏 divides ‖𝐺‖, so 𝐻𝜏 is a polynomial. Therefore, the polynomiality of 𝑆𝜏 is the only concern when proving
the above expression is a polynomial, since the sum on the right-hand side is over a set that is independent of 𝑞.

Character sums are polynomial. When 𝐺 = GL𝑛 and 𝑆 is semisimple with a ‘generic’ condition, character sums
were related to Macdonald polynomials, yielding useful polynomial expressions of character sums [HLRV11, Theorem
4.3.1]. Outside of type 𝐴, when 𝐺 = Sp2𝑛 and 𝑆 is regular, semisimple with a similar ‘generic’ condition, these
sums were related to posets of closed root subsystems [Cam17, §4.3.5]. As far as we know, the first type-independent
investigation to evaluate these sums was recently conducted in [KNP23], which we continue. A novelty of our current
work is that, unlike [KNP23], we do not rely on the presence of a regular unipotent conjugacy class.

Using character evaluation formulas of Deligne–Lusztig, one can deduce the polynomiality of 𝑆𝜏 via the polynomi-
ality of certain character sums of tori. It was shown for the first time in [KNP23] that these character sums of tori are
polynomial. This allows us to conclude polynomiality of 𝑆𝜏 when 𝑆 ∈ 𝐺 (𝔽𝑞) is strongly regular and split, so that 𝑆 is
contained in a unique split maximal torus 𝑇 (𝔽𝑞).

Theorem 7. Let 𝑋 be the character lattice of 𝐺, let Φ be the roots corresponding to the pair (𝐺,𝑇), and let 𝑑 (𝐺∨)
be the modulus of 𝐺∨. Then 𝑆𝜏 is essentially polynomial in 𝑞, in the sense that it is polynomial on residue classes.5
Furthermore, if 𝑋/〈Φ〉 is free and 𝑞 ≡ 1 mod 𝑑 (𝐺∨), then 𝑆𝜏 is polynomial in 𝑞.

Explicitly computing 𝑆𝜏 (𝑞) becomes tractable when one imposes a generic condition on 𝑆. This is a relatively light
assumption; generic elements form an open dense set in 𝑇 . We omit the expression obtained, but we note that this
allows us to relate our character sums to that of [HLRV11].

Future objectives. We state some objectives remaining in this project.
(i) We are writing a paper [KNW] containing the results above and some of the objectives below.
(ii) We seek to understand the Euler characteristic when dim 𝑍 = 0 and 𝑔 = 1. In [Cam17], the Euler characteristic

𝐸𝑛 of an Sp2𝑛-character variety was determined by the generating function∑︁
𝑛≥0

𝐸𝑛

|𝑊 (𝐵𝑛) |
𝑇𝑛 =

∏
𝑘≥1

1
(1 − 𝑇 𝑘)3

= 1 + 3𝑇 + 9𝑇2 + · · · .

(iii) We will relate the point-counts of character varieties to the above point-count of character stacks. This will allow
us to investigate the topological features of character varieties. Due to genericity of the puncture, we have found
that character stacks and character varieties have the same point-count.

(iv) We will examine the relationship between 𝑆𝜏 and the character sums computed in [HLRV11]. The latter were
computed using combinatorial descriptions of the representation theory of GL𝑛 (𝔽𝑞). Thus, comparing our
expressions may yield combinatorial insights into the situation.

(v) A natural goal is to remove the regularity condition placed on 𝑆. In this case, 𝑆 can be contained in many tori,
not just the unique one guarenteed by regularity. We must then appeal to another result of Deligne–Lusztig
[DL76, Corollary 7.6]. This tells us that, to proceed, one should understand the irreducible constituents of
𝑅𝐺
𝑇
(\). Unlike B(\), these irreducible constituents are not so well-behaved. However, an analogous result

[GM20, Theorem 2.3.2] gives us some handle on their behavior. In particular, we must replace 𝑊-conjugacy
with the concept of geometric conjugacy [DL76, Definition 5.5].

5This means that there are some 𝑁 ≥ 1 and polynomials 𝑓1, . . . , 𝑓𝑁 such that 𝑆𝜏 (𝑞) = 𝑓𝑖 (𝑞) for all 𝑞 ≡ 𝑖 mod 𝑁 . One notes that this implies
that the representation space is fibrewise polynomial-count in the sense of [HRV08].
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[Cam17] V. Cambò, On the 𝐸-polynomial of parabolic Sp2𝑛-character varieties, Ph.D. thesis, Scuola Inter-
nazionale Superiore di Studi Avanzati (SISSA), 2017. SISSA Digital Library. ↑1, 4, 5

[Car78] R. W. Carter, Centralizers of semisimple elements in finite groups of Lie type, Proc. London Math. Soc.
(3) 37 (1978), no. 3, 491–507. MR0512022 ↑4

[Car93] R. W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester,
1993. MR1266626 ↑4

[CF12] A. Casimiro and C. Florentino, Stability of affine 𝐺-varieties and irreducibility in reductive groups,
Internat. J. Math. 23 (2012), no. 8, 1250082 (30 pages). MR2949220 ↑2

[Cur80] C. W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62
(1980), no. 2, 320–332. MR0563231 ↑

[DL76] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103
(1976), no. 1, 103–161. MR0393266 ↑3, 5

[DM20] F. Digne and J. Michel, Representations of Finite Groups of Lie Type, 2nd ed., London Mathematical
Society Student Texts, Cambridge University Press, Cambridge, 2020. MR4211777 ↑

[GM20] M. Geck and G. Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced
Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. MR4211779 ↑3, 4, 5

[GP00] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London
Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press,
New York, 2000. MR1778802 ↑

[Gre55] J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955),
402–447. MR0072878 ↑3, 4

[Hau13] T. Hausel, Global topology of the Hitchin system, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM),
vol. 25, Int. Press, Somerville, MA, 2013, pp. 29–69. MR3184173 ↑1

[HLRV11] T. Hausel, E. Letellier, and F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver
varieties, Duke Math. J. 160 (2011), no. 2, 323–400. MR2852119 ↑1, 2, 3, 4, 5

[HRV08] T. Hausel and F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, Invent. Math.
174 (2008), no. 3, 555–624. With an appendix by Nicholas M. Katz. MR2453601 ↑1, 2, 3, 4, 5

[KNP23] M. Kamgarpour, G. Nam, and A. Puskás, Arithmetic geometry of character varieties with regular
monodromy, I (2023). Preprint, arXiv:2209.02171. ↑1, 5

[KNW] M. Kamgarpour, G. Nam, and B. Whitbread, Arithmetic geometry of character varieties with regular
monodromy, II, In preparation. ↑5

[Let15] E. Letellier, Character varieties with Zariski closures of GL𝑛-conjugacy classes at punctures, Selecta
Math. (N.S.) 21 (2015), no. 1, 293–344. MR3300418 ↑1

6

http://www.ams.org/mathscinet-getitem?mr=4337423
http://www.ams.org/mathscinet-getitem?mr=0546315
http://www.ams.org/mathscinet-getitem?mr=0671329
http://www.ams.org/mathscinet-getitem?mr=1207479
http://www.ams.org/mathscinet-getitem?mr=2732651
http://www.ams.org/mathscinet-getitem?mr=3236896
https://hdl.handle.net/20.500.11767/57152
http://www.ams.org/mathscinet-getitem?mr=0512022
http://www.ams.org/mathscinet-getitem?mr=1266626
http://www.ams.org/mathscinet-getitem?mr=2949220
http://www.ams.org/mathscinet-getitem?mr=0563231
http://www.ams.org/mathscinet-getitem?mr=0393266
http://www.ams.org/mathscinet-getitem?mr=4211777
http://www.ams.org/mathscinet-getitem?mr=4211779
http://www.ams.org/mathscinet-getitem?mr=1778802
http://www.ams.org/mathscinet-getitem?mr=0072878
http://www.ams.org/mathscinet-getitem?mr=3184173
http://www.ams.org/mathscinet-getitem?mr=2852119
http://www.ams.org/mathscinet-getitem?mr=2453601
https://arxiv.org/abs/2209.02171
http://www.ams.org/mathscinet-getitem?mr=3300418


[LRV23] E. Letellier and F. Rodriguez-Villegas, E-series of character varieties of non-orientable surfaces, Ann.
Inst. Fourier (Grenoble) 73 (2023), no. 4, 1385–1420. ↑1

[Lus84] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107,
Princeton University Press, Princeton, NJ, 1984. MR0742472 ↑3

[Lus14] G. Lusztig, Algebraic and geometric methods in representation theory (2014). Preprint, arXiv:1409.8003.
↑3

[Mel18] A. Mellit, Integrality of Hausel-Letellier-Villegas kernels, Duke Math. J. 167 (2018), no. 17, 3171–3205.
MR3874651 ↑1

[Mer15] M. Mereb, On the 𝐸-polynomials of a family of SL𝑛-character varieties, Math. Ann. 363 (2015), no. 3-4,
857–892. MR3412345 ↑4

[Sri68] B. Srinivasan, The characters of the finite symplectic group Sp(4, 𝑞), Trans. Amer. Math. Soc. 131
(1968), 488–525. MR0220845 ↑3

[Ste65] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25
(1965), 49–80. MR0180554 ↑3

7

http://www.ams.org/mathscinet-getitem?mr=0742472
https://arxiv.org/abs/1409.8003
http://www.ams.org/mathscinet-getitem?mr=3874651
http://www.ams.org/mathscinet-getitem?mr=3412345
http://www.ams.org/mathscinet-getitem?mr=0220845
http://www.ams.org/mathscinet-getitem?mr=0180554

	Background
	Representation spaces
	Counting points
	Frobenius' formula
	Results
	Lusztig's Jordan decomposition
	G-types
	Order polynomials and degree polynomials
	Point-counting with G-types
	Character sums are polynomial
	Future objectives
	References

