Topology of Representation Spaces via Arithmetic

Representation Spaces

Why do we care about representation spaces?

Topology

E-polynomials

To study the representation spaces, we compute their E-polynomials.

This is a specialisation of the Hodge polynomial which encodes fine cohomological data.

$$
\begin{array}{cc}
\text { Hodge polynomial } & E \text {-polynomial } \\
H(q, t) & E(q)
\end{array}
$$

Bailey Whitbread

Arithmetic

Weil's conjectures \& Katz' theorem

To compute E-polynomials, we rely on the Weil conjectures, a jewel of 20th century mathemat-
ics. The conjectures (now theorems) are technical, but they teach us an important philosophy
Cohomological information can be obtained by counting points over finite fields
A theorem due to Katz' refines this philosophy:
Theorem \mathbf{I} (Katz). Suppose that Y is a variety and $\left|Y\left(\mathbb{F}_{q}\right)\right|$ is given by some polynomial $P(q)$. Then the E-polynomial of Y is given b

Character sums are polynomial

Once Problem (2) is solved, the polynomiality of $\left|X\left(\mathbb{F}_{q}\right)\right|$ reduces to the following problem:
Problem 2. Suppose that $T \subseteq G$ is a split maximal torus and that $S \in T\left(\mathbb{F}_{q}\right)$.
Moreover, fix a closed root subsystem $\Psi \subseteq \Phi^{\top}$.
Show that the 'character sum defined by
is a polynomial in q.
This problem was solved in [KNP], where it was concluded that it is 'essentially' polynomial.

Results

Theorem 3 (Kamgarpour-Nam-W. 2023).
Let G be a connected split reductive group with connected centre Z. Let $C \subseteq G$ be a 'semisimple regular generic' conjugacy class.

Then the \mathbb{F}_{q}-points of the character variety X is polynomial in q and
\star The dimension of X is $(2 g-1) \operatorname{dim} G-\operatorname{rank} G+2 \operatorname{dim} Z$
\star The Euler characteristic of X is 0 if $g>1$ or $\operatorname{dim} Z>0$
\star The number of components of X and the centre of G^{\vee} are the same
\star The coefficients of $\left|X\left(\mathbb{F}_{q}\right)\right|$ are a palindrome
This points towards a 'curious' Poincare duality

Literature

In [Cambò], the author considered $G=\mathrm{Sp}_{2 n}$ and a 'semisimple regular generic conjugacy class.
Theorem 5. The \mathbb{F}_{q}-points of the character variety X is polynomial in q and
\star The dimension of X is $(2 g-1) n(2 n+1)-n$
\star The Euler characteristic is almost always 0
$\star X$ is connected
\star The coefficients of $\left|X\left(\mathbb{F}_{q}\right)\right|$ are a palindrome
Despite the centre of $\mathrm{Sp}_{2 n}$ being disconnected, the results are strikingly similar.

Visualisations

Figure 1: When $G=\mathrm{SL}_{2}$ and $\Gamma=\pi_{1}$ (Torus) $\simeq\langle x, y \mid x y=y x\rangle$, we obtain the Cayley cubic. The Cayley cubic's defining equation is $16 x y z+12\left(x^{2}+y^{2}+z^{2}\right)=27$.

Loose ends and open problems

\star What happens for different conjugacy classes? What if the surface has multiple punctures? \star What is the mixed Hodge polynomial of these representation spaces?
\star When $G=\mathrm{GL}_{n}$, there is a strong combinatorial theory. In [HRV, HLRV], the authors used symmetric functions and Macdonald polynomials. Can we count points of representation spaces using these combinatorial ideas as well?
\star When $g=1$, the Euler characteristic E_{n} of an $\mathrm{S}_{2 n}$-character variety was given in [Cambò]

$$
\sum_{n \geq 0} \frac{E_{n}}{2^{n} n!} T^{n}=\prod_{k \geq 1} \frac{1}{\left(1-T^{k}\right)^{3}}=1+3 T+9 T^{2}+.
$$

Can we obtain an expression for the Euler characteristic when $g=1$ and $\operatorname{dim} Z=0$?

Acknowledgements

Joint with Masoud Kamgarpour and GyeongHyeon Nam. MK is supported by ARC Discovery Project DP200102316. GN \& BW are supported by the Australia
Research Training Program scholarships.
Made in $4 T E X$ with Josefin Sans and tcolorbox.

References

[HRV] Mixed Hodge polynomials of character varieties,
T. Hausel, F. Rodriguez-Villegas, 2008,
[HLRV] Arithmetic harmonic analysis on character and quiver varieties,
T. Hausel, E. Letellier, F. Rodriguez-Villegas, 2011.

References
[Cambo] On the E-polynomial of parabolic $\mathrm{Sp}_{2 n}$-character varieties,
V. Cambò, 2017.
[KNP] Arithmetic geometry of character varieties with regular monodromy I,
M. Kamgarpour, G. Nam, A. Puskás, 2023.

The University Of Queensland australia

