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CHARACTER VARIETIES

G := reductive group over F, C := conjugacy class in G
g = its Lie algebra over F, O = adjoint orbitin g

The multiplicative character variety is
g
X = {(Aq,Bq,...,Ag,Bg,C) eGY9xC ‘ [Jw.BlC= 1}/6
i=1

The additive character variety is

g
Y= {(XT,Yq,...,xg,vg,Z) eg9x0O ‘ > X+ 7= 0}/6
=1
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THE GL, EXAMPLE

G := general linear group GL, C := conjugacy class in G
g := its Lie algebra gl, O = adjoint orbitin g

If g =1, the multiplicative and additive character varieties are

[A,B]C:1}/GL2

Y:{(X,Y,Z)eglzxglzx(’)‘[X,Y]+Z:O}/GL2

X:{(A,B,C)EGLzXGLzXC

One can compute by hand

X(Fe)l=q*—q—q+1 and [Y(Fq)|=q"+¢’
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Main Conjecture
(i) |Y(Fq)| has positive coefficients
(i) H*(Y) is the ‘pure’ subring of H*(X)
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If G = GL, then the cohomology of Y is pure

Conjecture (Hausel-Letellier-Rodriguez-Villegas)
If G = GL, then H*(Y) ~ H%,,.(X)

pure

HEure(Y) c;) H*(Y) """ » Hj
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COUNTING POINTS

We access cohomology by counting points over finite fields

_ Weil conjectures
j X(Fq)| vy HY(X)
()|~ HY(Y)

GL,-example: [X(Fg)|=q"—q—qg+1 & |Y(F)|=qg"+¢’

dim(X) =dim(Y) =4, x(X)=0, x(Y)=2, X&Y connected
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PATTERNS AND OBSERVATIONS

Main Theorem
IX(Fq)| and |Y(Fy)| are polynomials in q with explicit formulas

Corollary Corollary N '
We know the dimensions, IY(Fy)| has positive coefficients
In 160,000+ cases:

# of components and Euler
(i) When rank(G) < 6,

characteristics of X and Y
(i) When (=—=—=_""=) has

Corollary
at most genus 10, and

IX(IFq)| Is always palindromic
Eg. X(Fy)|=q*—q>—q+1  (iii) When (= =—=_""=) has

~ 1,=1,0, =11 at most 1000 punctures
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