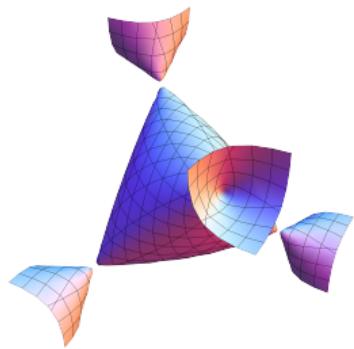


A POSITIVITY CONJECTURE FOR CHARACTER VARIETIES

Bailey Whitbread
University of Sydney



with Stefano Giannini, Masoud Kamgarpour & GyeongHyeon Nam

CHARACTER VARIETIES

This talk is about two varieties:

$\textcolor{blue}{X}$:= multiplicative character variety

$\textcolor{red}{Y}$:= additive character variety

$\textcolor{blue}{X}$ is built from reductive groups $G = \mathrm{GL}_n, \mathrm{SO}_n, \mathrm{Sp}_{2n}$, etc.

$\textcolor{red}{Y}$ is built from their Lie algebras $\mathfrak{g} = \mathfrak{gl}_n, \mathfrak{so}_n, \mathfrak{sp}_{2n}$, etc.

CHARACTER VARIETIES

This talk is about two varieties:

$\textcolor{blue}{X}$:= multiplicative character variety

$\textcolor{red}{Y}$:= additive character variety

$\textcolor{blue}{X}$ is built from reductive groups $G = \mathrm{GL}_n, \mathrm{SO}_n, \mathrm{Sp}_{2n}$, etc.

$\textcolor{red}{Y}$ is built from their Lie algebras $\mathfrak{g} = \mathfrak{gl}_n, \mathfrak{so}_n, \mathfrak{sp}_{2n}$, etc.

Main Theorem

$|\textcolor{blue}{X}(\mathbb{F}_q)|$ and $|\textcolor{red}{Y}(\mathbb{F}_q)|$ are polynomials in q

CHARACTER VARIETIES

G := reductive group over \mathbb{F}_q

\mathfrak{g} := its Lie algebra over \mathbb{F}_q

\mathcal{C} := conjugacy class in G

\mathcal{O} := adjoint orbit in \mathfrak{g}

$$\pi_1\left(\text{---} \ast \text{---} \dots \text{---}\right) = \left\langle a_1, b_1, \dots, a_g, b_g, c \mid \prod_{i=1}^g [a_i, b_i] c = 1 \right\rangle$$

CHARACTER VARIETIES

G := reductive group over \mathbb{F}_q

\mathfrak{g} := its Lie algebra over \mathbb{F}_q

\mathcal{C} := conjugacy class in G

\mathcal{O} := adjoint orbit in \mathfrak{g}

$$\pi_1\left(\text{---} \ast \text{---} \dots \text{---}\right) = \left\langle a_1, b_1, \dots, a_g, b_g, c \mid \prod_{i=1}^g [a_i, b_i] c = 1 \right\rangle$$

$$\left\{ f: \pi_1\left(\text{---} \ast \text{---} \dots \text{---}\right) \rightarrow G \mid f(c) \in \mathcal{C} \right\} / G$$

$$\left\{ (A_1, B_1, \dots, A_g, B_g, C) \in G^{2g} \times \mathcal{C} \mid \prod_{i=1}^g [A_i, B_i] C = 1 \right\} / G$$

CHARACTER VARIETIES

G := reductive group over \mathbb{F}_q

\mathcal{C} := conjugacy class in G

\mathfrak{g} := its Lie algebra over \mathbb{F}_q

\mathcal{O} := adjoint orbit in \mathfrak{g}

The multiplicative character variety is

$$\textcolor{blue}{X} := \left\{ (\textcolor{green}{A}_1, B_1, \dots, \textcolor{green}{A}_g, \textcolor{green}{B}_g, \textcolor{blue}{C}) \in G^{2g} \times \mathcal{C} \mid \prod_{i=1}^g [\textcolor{green}{A}_i, \textcolor{green}{B}_i] \textcolor{blue}{C} = 1 \right\} / G$$

CHARACTER VARIETIES

G := reductive group over \mathbb{F}_q

\mathcal{C} := conjugacy class in G

\mathfrak{g} := its Lie algebra over \mathbb{F}_q

\mathcal{O} := adjoint orbit in \mathfrak{g}

The multiplicative character variety is

$$\textcolor{blue}{X} := \left\{ (\textcolor{green}{A}_1, B_1, \dots, \textcolor{green}{A}_g, \textcolor{green}{B}_g, \textcolor{blue}{C}) \in G^{2g} \times \mathcal{C} \mid \prod_{i=1}^g [\textcolor{green}{A}_i, \textcolor{green}{B}_i] \textcolor{blue}{C} = 1 \right\} / G$$

The additive character variety is

$$\textcolor{red}{Y} := \left\{ (\textcolor{green}{X}_1, Y_1, \dots, \textcolor{green}{X}_g, \textcolor{green}{Y}_g, \textcolor{blue}{Z}) \in \mathfrak{g}^{2g} \times \mathcal{O} \mid \sum_{i=1}^g [\textcolor{green}{X}_i, \textcolor{green}{Y}_i] + \textcolor{blue}{Z} = 0 \right\} / G$$

THE GL_2 EXAMPLE

G := general linear group GL_2

\mathcal{C} := conjugacy class in G

\mathfrak{g} := its Lie algebra \mathfrak{gl}_2

\mathcal{O} := adjoint orbit in \mathfrak{g}

If $g = 1$, the multiplicative and additive character varieties are

$$\textcolor{blue}{X} = \left\{ (\textcolor{green}{A}, \textcolor{green}{B}, \textcolor{blue}{C}) \in \mathrm{GL}_2 \times \mathrm{GL}_2 \times \mathcal{C} \mid [\textcolor{green}{A}, \textcolor{green}{B}] \textcolor{blue}{C} = 1 \right\} \Big/ \mathrm{GL}_2$$

$$\textcolor{red}{Y} = \left\{ (\textcolor{green}{X}, \textcolor{green}{Y}, \textcolor{blue}{Z}) \in \mathfrak{gl}_2 \times \mathfrak{gl}_2 \times \mathcal{O} \mid [\textcolor{green}{X}, \textcolor{green}{Y}] + \textcolor{blue}{Z} = 0 \right\} \Big/ \mathrm{GL}_2$$

THE GL_2 EXAMPLE

$G :=$ general linear group GL_2

$\mathcal{C} :=$ conjugacy class in G

$\mathfrak{g} :=$ its Lie algebra \mathfrak{gl}_2

$\mathcal{O} :=$ adjoint orbit in \mathfrak{g}

If $g = 1$, the multiplicative and additive character varieties are

$$\textcolor{blue}{X} = \left\{ (\textcolor{green}{A}, \textcolor{green}{B}, \textcolor{blue}{C}) \in \mathrm{GL}_2 \times \mathrm{GL}_2 \times \mathcal{C} \mid [\textcolor{green}{A}, \textcolor{green}{B}] \textcolor{blue}{C} = 1 \right\} \Big/ \mathrm{GL}_2$$

$$\textcolor{orange}{Y} = \left\{ (\textcolor{green}{X}, \textcolor{green}{Y}, \textcolor{blue}{Z}) \in \mathfrak{gl}_2 \times \mathfrak{gl}_2 \times \mathcal{O} \mid [\textcolor{green}{X}, \textcolor{green}{Y}] + \textcolor{blue}{Z} = 0 \right\} \Big/ \mathrm{GL}_2$$

One can compute by hand

$$|\textcolor{blue}{X}(\mathbb{F}_q)| = q^4 - q^3 - q + 1 \quad \text{and} \quad |\textcolor{orange}{Y}(\mathbb{F}_q)| = q^4 + q^3$$

OUR POSITIVITY CONJECTURE

New examples of $|\textcolor{red}{Y}(\mathbb{F}_q)|$:

$$q^2 + 6q$$

$$q^6 + 2q^5 + 2q^4 + q^3$$

$$q^4 + 6q^3 + 20q^2$$

$$q^8 + 2q^7 + 4q^6 + 4q^5 + q^4$$

$$q^8 + 6q^7 + 19q^6 + 45q^5 + 99q^4$$

$$q^{12} + 2q^{11} + 3q^{10} + 5q^9 + \dots$$

OUR POSITIVITY CONJECTURE

New examples of $|\textcolor{orange}{Y}(\mathbb{F}_q)|$:

$$q^2 + 6q$$

$$q^6 + 2q^5 + 2q^4 + q^3$$

$$q^4 + 6q^3 + 20q^2$$

$$q^8 + 2q^7 + 4q^6 + 4q^5 + q^4$$

$$q^8 + 6q^7 + 19q^6 + 45q^5 + 99q^4$$

$$q^{12} + 2q^{11} + 3q^{10} + 5q^9 + \dots$$

Main Conjecture

- (i) $|\textcolor{orange}{Y}(\mathbb{F}_q)|$ has positive coefficients
- (ii) $H^*(\textcolor{orange}{Y})$ is the 'pure' subring of $H^*(\textcolor{blue}{X})$

PURITY

$$H_{\text{pure}}^*(\textcolor{orange}{Y}) \longleftrightarrow H^*(\textcolor{orange}{Y})$$

$$H_{\text{pure}}^*(\textcolor{blue}{X}) \longleftrightarrow H^*(\textcolor{blue}{X})$$

PURITY

$$H_{\text{pure}}^*(\textcolor{orange}{Y}) \longleftrightarrow H^*(\textcolor{orange}{Y})$$

$$H_{\text{pure}}^*(\textcolor{blue}{X}) \longleftrightarrow H^*(\textcolor{blue}{X})$$

Theorem (Hausel–Letellier–Rodriguez–Villegas)

If $G = \text{GL}_n$ then the cohomology of $\textcolor{orange}{Y}$ is pure

PURITY

$$H_{\text{pure}}^*(\textcolor{orange}{Y}) \longleftrightarrow H^*(\textcolor{orange}{Y})$$

$$H_{\text{pure}}^*(\textcolor{blue}{X}) \longleftrightarrow H^*(\textcolor{blue}{X})$$

Theorem (Hausel–Letellier–Rodriguez–Villegas)

If $G = \text{GL}_n$ then the cohomology of $\textcolor{orange}{Y}$ is pure

Conjecture (Hausel–Letellier–Rodriguez–Villegas)

If $G = \text{GL}_n$ then $H^(\textcolor{orange}{Y}) \simeq H_{\text{pure}}^*(\textcolor{blue}{X})$*

PURITY

$$H_{\text{pure}}^*(\textcolor{orange}{Y}) \xrightarrow{\quad} H^*(\textcolor{orange}{Y})$$

$$H_{\text{pure}}^*(\textcolor{blue}{X}) \xrightarrow{\quad} H^*(\textcolor{blue}{X})$$

Theorem (Hausel–Letellier–Rodriguez–Villegas)

If $G = \text{GL}_n$ then the cohomology of $\textcolor{orange}{Y}$ is pure

Conjecture (Hausel–Letellier–Rodriguez–Villegas)

If $G = \text{GL}_n$ then $H^(\textcolor{orange}{Y}) \simeq H_{\text{pure}}^*(\textcolor{blue}{X})$*

$$H_{\text{pure}}^*(\textcolor{orange}{Y}) \xrightarrow{\quad \sim \quad} H^*(\textcolor{orange}{Y}) \dashrightarrow H_{\text{pure}}^*(\textcolor{blue}{X}) \xrightarrow{\quad} H^*(\textcolor{blue}{X})$$

COUNTING POINTS

We access cohomology by counting points over finite fields

Weil conjectures

$$|\textcolor{blue}{X}(\mathbb{F}_q)| \rightsquigarrow H^*(\textcolor{blue}{X})$$

$$|\textcolor{orange}{Y}(\mathbb{F}_q)| \rightsquigarrow H^*(\textcolor{orange}{Y})$$

COUNTING POINTS

We access cohomology by counting points over finite fields

Weil conjectures

$$|\textcolor{blue}{X}(\mathbb{F}_q)| \xrightarrow{\sim} H^*(\textcolor{blue}{X})$$

$$|\textcolor{orange}{Y}(\mathbb{F}_q)| \xrightarrow{\sim} H^*(\textcolor{orange}{Y})$$

GL₂-example: $|\textcolor{blue}{X}(\mathbb{F}_q)| = q^4 - q^3 - q + 1$ & $|\textcolor{orange}{Y}(\mathbb{F}_q)| = q^4 + q^3$

⋮

$\dim(\textcolor{blue}{X}) = \dim(\textcolor{orange}{Y}) = 4$, $\chi(\textcolor{blue}{X}) = 0$, $\chi(\textcolor{orange}{Y}) = 2$, $\textcolor{blue}{X}$ & $\textcolor{orange}{Y}$ connected

PATTERNS AND OBSERVATIONS

Main Theorem

$|\textcolor{blue}{X}(\mathbb{F}_q)|$ and $|\textcolor{red}{Y}(\mathbb{F}_q)|$ are polynomials in q with explicit formulas

PATTERNS AND OBSERVATIONS

Main Theorem

$|\textcolor{blue}{X}(\mathbb{F}_q)|$ and $|\textcolor{red}{Y}(\mathbb{F}_q)|$ are polynomials in q with explicit formulas

Corollary

We know the dimensions,
of components and Euler
characteristics of $\textcolor{blue}{X}$ and $\textcolor{red}{Y}$

PATTERNS AND OBSERVATIONS

Main Theorem

$|\mathbf{X}(\mathbb{F}_q)|$ and $|\mathbf{Y}(\mathbb{F}_q)|$ are polynomials in q with explicit formulas

Corollary

We know the dimensions,
of components and Euler
characteristics of \mathbf{X} and \mathbf{Y}

Corollary

$|\mathbf{X}(\mathbb{F}_q)|$ is always palindromic

E.g. $|\mathbf{X}(\mathbb{F}_q)| = q^4 - q^3 - q + 1$
 $\rightsquigarrow 1, -1, 0, -1, 1$

PATTERNS AND OBSERVATIONS

Main Theorem

$|\text{X}(\mathbb{F}_q)|$ and $|\text{Y}(\mathbb{F}_q)|$ are polynomials in q with explicit formulas

Corollary

We know the dimensions, # of components and Euler characteristics of X and Y

Corollary

$|\text{X}(\mathbb{F}_q)|$ is always palindromic

E.g. $|\text{X}(\mathbb{F}_q)| = q^4 - q^3 - q + 1$
 $\rightsquigarrow 1, -1, 0, -1, 1$

Corollary

$|\text{Y}(\mathbb{F}_q)|$ has positive coefficients in 160,000+ cases:

- (i) When $\text{rank}(G) \leq 6$,
- (ii) When has at most genus 10, and
- (iii) When has at most 1000 punctures

