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Abstract

We study character varieties associated to punctured orientable surfaces and connected split reductive

groups. To study these varieties, we count points over finite fields and find the number of points is a

polynomial, called the counting polynomial.

We compute features of the counting polynomial such as its degree, its leading coefficient and its

value at 1, yielding topological information such as the dimension, number of components and Euler

characteristic of character varieties, respectively. We prove the counting polynomial is palindromic

which suggests a curious Poincaré duality for character varieties. We also implement our formula for

the counting polynomial using the CHEVIE system in the Julia programming language.

There are two main ideas appearing in this thesis: representation-theoretic data called G-types elu-

cidates the point-count of character varieties, and choosing conjugacy classes ‘generically’ simplifies

the point-count.
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Chapter 1

Introduction

1.1 Overview

This thesis lies at the intersection between two branches of mathematics: algebra and geometry.

Specifically, it lies at the intersection between representation theory, algebraic geometry and arith-

metic geometry. Algebraic and arithmetic geometry study spaces defined by polynomial equations,

while representation theory is the study of algebraic objects through linearisation techniques. In this

thesis, we study the aforementioned spaces using the toolboxes of representation theory, algebraic

geometry and arithmetic geometry.

A basic object linking the two worlds of algebra and geometry is an (affine) algebraic group.

Briefly, this is an affine algebraic variety G over a field k such that G is an abstract group and the

associated multiplication and inversion maps are morphisms of varieties. When the field k equals

C or R, we recover many important examples of complex and real Lie groups including SL2(C),
SO3(R), and so on. Although there are many important common themes, the theory of algebraic

groups and the theory of Lie groups are distinct because, for instance, some Lie groups cannot be

realised as an algebraic group over R or C.

Figure 1.1: An SL2-character variety

[CFLO16].

Character varieties are built from algebraic

groups. Roughly speaking, they are spaces whose

points are homomorphisms from the fundamen-

tal group of an orientable surface to a con-

nected algebraic group G. These varieties are

related to numerous topics in mathematics and

physics, including the Langlands program, the Yang–

Mills equations, gauge theory, Higgs bundles, the

Hitchin system, Calabi–Yau manifolds, non-abelian

Hodge theory, Hitchin’s equations, the P = W

conjecture, and mirror symmetry [AB83, Hit87,

Sim91, Sim92, BD96, HT03, DP12, Hau13, BPG-

PNT14, BP16, BZN18, HMMS22, Hos23, MS24].
1
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Character varieties are generally not well-understood. Significant progress has been made when G

is the general linear group GLn. This is thanks to the seminal work of Hausel, Letellier and Rodriguez-

Villegas [HRV08, HLRV11] and subsequent work [Let15, Sch16, Mel18, Mel19, Mel20, Bal23]. In

light of the Langlands program, which seeks to connect algebraic geometry, representation theory

and number theory, we study character varieties built from a wide class of algebraic groups.

We investigate character varieties by studying their cohomology, obtaining useful topological

invariants such as dimension, Euler characteristic, and the number of irreducible components. We

access these invariants through techniques of arithmetic geometry. Specifically, our work relies on

the Weil conjectures, a jewel of 20th century mathematics. Their statements are complicated, but they

teach us an important philosophy: cohomological information can be obtained by counting points

over finite fields.

FERDINAND GEORG FROBENIUS 

1849-1917 

Figure 1.2: Frobenius created rep-

resentation theory, prompted by

work of Dedekind [Fro68].

A formula first revealed by Frobenius links the number of

points on the character variety over finite fields to the complex

representation theory of the underlying finite group.1 This pro-

vides a clear strategy to analyse character varieties: use the rep-

resentation theory of finite groups to evaluate Frobenius’ for-

mula and extract cohomological information from the resulting

expression. This is the strategy employed in this thesis.

The finite groups appearing in this thesis are algebraic

groups over Fq, the finite field with order a prime power q = pr.

In this setting, we recover many important families of finite

groups, such as SLn(Fq), GLn(Fq) and SOn(Fq). Such groups

are called finite groups of Lie type, due to their connections to

Lie groups, and are closely related to the classification of finite

simple groups [Gal76, §12]. Since these groups are finite, their

complex representation theory is well-behaved in the sense that

it is sufficient to understand the finite list of so-called irreducible

representations.

The picture illustrates Grothendieck’s vision of a pinned reductive
group: the body is a maximal torus T, the wings are the opposite
Borel subgroups B, and the pins rigidify the situation. (“Demazure nous
indique que, derrière cette terminologie [épinglage], il y a l’image du
papillon (que lui a fournie Grothendieck): le corps est un tore maximal
T, les ailes sont deux sous-groupes de Borel opposées par rapport à T,
on déploie le papillon en étalant les ailes, puis on fixe des éléments dans
les groupes additifs (des épingles) pour rigidifier la situation.” SGA 3,
XXIII, p. 177.)

The background image is a Blue Morpho butterfly. Credit: LPETTET/DigitalVision
Vectors/Getty Images.

Figure 1.3: Grothendieck’s visualisation of

connected reductive groups [Mil17].

While analysing finite groups and their represen-

tations individually can yield insights, we need to un-

derstand the situation uniformly. Such an understand-

ing has already been achieved, up to some conditions

on G and p. Specifically, the representation theory of

finite groups of Lie type is well-understood uniformly

when G is connected and reductive (the latter mean-

ing G contains no non-trivial closed connected normal

‘unipotent’ subgroups) with connected centre and p is

not too small. This is primarily due to the eponymous

characters of Deligne and Lusztig [DL76, Lus84].

1The connection to Frobenius’ work is as follows. Given three conjugacy classes C1,C2,C3 of a finite group, Frobenius
used representation theory to determine the number of pairs (x,y) ∈C1×C2 with xy ∈C3 [Fro68, Band III, p. 1].
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The novelty of this thesis is our type-independent approach; i.e., we do not make assumptions

about the type of (the underlying root system of) G and our proofs are not case-by-case in the type of

G. When in such generality, we find fundamental objects arising in the Langlands program (such as

Langlands dual groups, pseudo-Levi subgroups and endoscopy groups) play key roles in our analysis

of character varieties; such phenomena does not arise when G = GLn. Our findings appear in the

preprint [KNWG24].

The remainder of this introduction is as follows. In §1.2, we define the three closely related spaces

we study: the representation variety, the character variety, and the character stack. We explain how

we study these spaces in §1.3. Namely, we state two ideas fundamental to this thesis (polynomial

and rational count spaces) and we explain how one uses these to extract cohomological information.

Equipped with this knowledge, we detail what is already known about character varieties in §1.4.

1.2 Character varieties

Suppose G is a connected reductive group over a finite field Fq and let Σ be an orientable surface with

genus g≥ 0 and n≥ 1 punctures, depicted as follows.

This surface has the fundamental group

π1(Σ)≃
〈

a1,b1, . . . ,ag,bg,y1, . . . ,yn

∣∣∣∣ [a1,b1] · · · [ag,bg]y1 · · ·yn = 1
〉

and therefore a group homomorphism π1(Σ)→ G is determined by the images of the generators,

subject to the relation of the fundamental group. Thus, we have a bijection

Hom(π1(Σ),G)≃
{
(A1,B1, . . . ,Ag,Bg,Y1, . . . ,Yn) ∈ G2g+n

∣∣∣∣ [A1,B1] · · · [Ag,Bg]Y1 · · ·Yn = 1
}
.

Reductive groups carry the structure of a variety, so this space of homomorphisms does too. Choosing

conjugacy classes C= (C1, . . . ,Cn) in G, we define

HomC(π1(Σ),G) :=
{
(A1,B1, . . . ,Ag,Bg,Y1, . . . ,Yn) ∈ Hom(π1(Σ),G)

∣∣∣∣ Yi ∈Ci

}
.

We call HomC(π1(Σ),G) the representation variety associated to G, Σ and C. Recall two repre-

sentations π1(Σ)→G are equivalent if they are conjugate by an element of G. Under the identification

HomC(π1(Σ),G)⊆G2g+n, the representation variety admits an action of G by simultaneous conjuga-

tion in each entry. Thus, it is natural to consider the collection of orbits HomC(π1(Σ),G)/G. However,

this does not necessarily inherit the algebro-geometric structure of G.

There are two ways of endowing the collection of orbits with an algebro-geometric structure:

(i) We consider the geometric-invariant-theory (GIT) quotient, denoted HomC(π1(Σ),G)//G. His-

torically, this was the first solution to the orbit-space problem, due to Mumford [Mum65]. Over

algebraically closed fields, the points of the GIT quotient are in bijection with the closed orbits.
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(ii) We consider the stack quotient, denoted [HomC(π1(Σ),G)/G]. Stacks are a higher algebraic

object defined in the wake of Grothendieck, Mumford, Deligne and Artin, who resolved the

orbit-space problem by keeping track of additional data which is forgotten by the GIT quotient.

In a sense, the stack quotient is the ‘correct’ quotient, but its construction requires some work.

The GIT quotient HomC(π1(Σ),G)//G is called the character variety and has a close relationship

to the problems from other areas stated earlier. In general, when the action of G is not free, it is not

clear how to relate the point-counts of the character variety and representation variety. On the other

hand, the stack quotient [HomC(π1(Σ),G)/G] is called the character stack, and it has essentially

the same point-count as that of the representation variety. Since the centre Z of G acts trivially on

the representation variety, the G-action on the representation variety is usually not well-behaved.

However, by definition of the GIT quotient, we only need the G/Z-action to be well-behaved.

1.3 Counting points

Our strategy for analysing character varieties is to count their points over finite fields. We say a variety

X defined over Fq is polynomial count with counting polynomial ||X || ∈Q[t] if

|X(Fqn)|= ||X ||(qn) for all n≥ 1.

More generally, we say X is potentially polynomial count if it becomes polynomial count after

passing to a finite extension of Fq.

Fine cohomological information is encoded in counting polynomials (see [LRV23, §2.2] for de-

tails). From these polynomials, which we can extract topological information. For example,

(i) The dimension of X is the degree of ||X ||,

(ii) The Euler characteristic of X is given by ||X ||(1), and

(iii) The number of irreducible components of X is the leading coefficient of ||X ||.2

Counting polynomials encode cohomological information, so it is worthwhile asking if they are

palindromic, meaning their coefficients are the same when read backwards and forwards. If X is

smooth, projective and polynomial count then Poincaré duality implies ||X || is palindromic. The

character varieties in this project are affine but we find they have palindromic counting polynomials

too. This suggests several properties concerning the mixed Hodge structure of character varieties:

they obey curious Poincaré duality, curious hard Lefschetz and the P = W conjecture, cf. [HRV08,

HLRV11, Hau13].

The story above can be extended to a larger class of algebraic objects. We will need this extended

story in order to analyse the character stack. We say an algebraic stack X of finite type over Fq is

rational count with counting function ||X|| ∈Q(t) if

|X(Fqn)|= ||X||(qn) for all n≥ 1,
2The leading coefficient is actually the number of irreducible components of maximum dimension. We work with

equidimensional spaces, so this technicality can be ignored.
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and potentially rational count stacks are defined analogously. Clearly, if X is polynomial count then

it is rational count, and the converse is true if X is a variety defined over Fq [LRV23, Lemma 2.8].

In general, counting points over finite fields is not an easy problem. However, in our setting, there

is a formula due to Frobenius telling us how to count points on the representation variety. Suppose

H is an abstract finite group and choose conjugacy classes H1, . . . ,Hn in H. Then Frobenius’ formula

says the number of solutions to

[x1,y1] · · · [xg,yg]z1 · · ·zn = 1, xi,yi ∈ H, z j ∈ H j,

equals

|H| ∑
χ∈Irr(H)

(
|H|

χ(1)

)2g−2 n

∏
i=1

χ(Hi)

χ(1)
|Hi|,

where Irr(H) is the set of irreducible complex characters of H [HLRV11, Proposition 3.1.4].

We apply Frobenius’ formula to the abstract finite group G(Fq) and conjugacy classes Ci(Fq).3

Evaluating Frobenius’ formula, and hence studying the arithmetic geometry of character varieties,

becomes a problem in the world of the representation theory of finite reductive groups. Note we

do not need to impose reductivity on the algebraic group G to make use of Frobenius’ formula.4

However, assuming G is reductive gives us access to powerful techniques of Deligne–Lusztig theory.

1.4 Literature

Our work is inspired by the ground-breaking work of Hausel, Letellier and Rodriguez-Villegas. In

[HRV08, HLRV11], they studied the character variety when G = GLn and C consists of semisim-

ple conjugacy classes chosen in a ‘generic’ sense. The primary benefit of the generic assumption is

G/Z acts freely on the representation variety, so the character stack and character variety coincide

[HLRV11, Proposition 2.1.4]. The authors count points on character varieties over finite fields, con-

clude the character variety is polynomial count and analyse the counting polynomial. A significant

feature of this work is the use of symmetric functions which arise naturally due to the combinatorial

description of Irr(GLn(Fq)) originally given in [Gre55].

In [Cam17], the author studies the character variety when G = Sp2n and Σ is an orientable surface

of genus g ≥ 0 with one puncture. At the puncture, the conjugacy class is semisimple, regular and

‘generic’ in a sense similar to that of [HRV08, HLRV11]. In this setting, the generic assumption

does not imply G/Z acts freely on the representation variety. Thus, the main difficulties are twofold:

understand the G/Z-action on the representation variety and understand the representation theory of

Sp2n(Fq). The author finds the stabilisers of this action are finite [Cam17, Proposition 3.1.6] and

begins to draw on Deligne–Lusztig theory [Cam17, §2.2]. This allows the author to count points on

character varieties over finite fields, conclude the character variety is polynomial count and analyse

the counting polynomial.
3We will be careful to ensure Ci(Fq) is a single G(Fq)-conjugacy class.
4Understanding character varieties when the algebraic group is not reductive is closely-related to Higman’s conjecture

[Hig60, p. 29] which says the number of conjugacy classes of the group of unipotent matrices in GLn(Fq) is a polynomial
in q. There is evidence to suggest Higman’s conjecture fails for n≥ 59 [PS15, Conjecture 1.6].
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In [BK23], the authors consider a general connected reductive group with connected center and

an orientable surface of genus g ≥ 0 with no punctures. Rather than study the character variety

directly, the authors study the character stack. This is because, without the presence of punctures,

the G/Z-action on the representation variety is difficult to understand and control, but one can still

study the representation variety and character stack. The main ingredient in the authors’ work is a

deep theorem in Deligne–Lusztig theory called Lusztig’s Jordan decomposition which describes the

irreducible representations of G(Fq). The authors count points on character stacks over finite fields,

conclude the character stack is potentially polynomial count and analyse the counting polynomial.

In [KNP23], the authors add punctures to the setting of [BK23]; they choose both semisimple

regular and unipotent regular conjugacy classes. They study the character variety directly, since the

mixture of semisimple regular and unipotent regular conjugacy classes means G/Z acts freely on the

representation variety [KNP23, Lemma 3]. In view of Frobenius’ formula, the authors must deal

with character values at semisimple regular and unipotent regular elements. However, in light of a

theorem of Green, Lusztig and Lehrer, many of these character values are zero [KNP23, Theorem

14]. This simplifies calculations, reducing them to a problem involving Weyl groups acting on tori

[KNP23, §4] and the evaluation of certain character sums [KNP23, §5]. The authors then count point

on character varieties over finite fields, conclude the character variety is polynomial count and analyse

the counting polynomial.

In this thesis, we study the same character varieties as [KNP23], but only semisimple regular

conjugacy classes are chosen. The lack of a unipotent regular conjugacy classes means we are forced

to address several problems: the G/Z-action on the representation variety may not be free, Frobenius’

formula involves many non-zero character values, and we must explicitly evaluate the character sums

seen in [KNP23]. To navigate these problems, we define a reductive generalisation of the ‘generic’

condition seen in [HRV08, HLRV11, Cam17] and inspired by [Boa14]. Therefore, one can view this

thesis as a step towards a reductive generalisation of [HRV08, HLRV11].5

The contents of this thesis are as follows. We begin by fixing terminology, presenting our new

results, and stating some unexplored directions warranting further exploration in §2. In §3, we recall

necessary and deep results from the representation theory of finite reductive groups. In §4, we use

this theory to define the notion of a G-type which are the lens through which we view Frobenius’

formula, reducing the evaluation of Frobenius’ formula to the evaluation of certain character sums. In

§5, we develop a key idea which is a generic choice of conjugacy classes simplifies the point-count

of character varieties. We perform some technical analysis of the aforementioned character sums in

§6, allowing us to prove our main theorems in §7.

The appendix of this thesis contains worked examples of counting points on character varieties

using our new formulas in §A, and we quickly and automatically compute counting polynomials

using the CHEVIE system in §B.

5This thesis is not a generalisation of [Cam17] since Sp2n has disconnected centre.



Chapter 2

Main results

2.1 Results

Let G be a connected reductive group over Fq with connected centre Z and maximal split torus T ⊆G.

Let Σ be an orientable surface with genus g ≥ 0 and n ≥ 1 punctures and fix conjugacy classes

C = (C1, . . . ,Cn) in G. Denote the representation variety by R := HomC(π1(Σ),G) and recall G acts

on R by simultaneous conjugation (with Z acting trivially). Thus, we form the character variety

X := R//(G/Z) = R//G

and the character stack

X := [R/(G/Z)].

In this thesis, we make a light assumption on g and n:

Assumption 1. Assume 2g−2+n≥ 1, in addition to our requirement that g≥ 0 and n≥ 1.

This assumption excludes the cases (g,n) = (0,1) and (0,2) which can be studied by hand since,

in these cases, we have π1(Σ)≃ 1 and π1(Σ)≃ Z, respectively.

We also make two important assumptions on the conjugacy classes C= (C1, . . . ,Cn):

Assumption 2. Assume

(i) Each Ci is the conjugacy class of a strongly regular element Si ∈ T (Fq), and

(ii) The product S1 · · ·Sn lies in [G,G]; i.e., C1 · · ·Cn ⊆ [G,G].

Strongly regular is meant in the sense of [Ste65] (i.e., CG(Si) = T ) and such elements form a dense

open set in G [Ste65, 2.15]. The first assumption implies each Si is semisimple, and that the centraliser

of each Ci is connected. As promised in §1.3, this means Ci(Fq) is a single G(Fq)-conjugacy class

[GM20, §2.7.1]. The second assumption is clearly necessary for R to be non-empty.

We exclude finitely many primes so that the structure of G and representation theory of G(Fq) are

well-behaved. The primes we exclude depend only on the root datum of G:

Assumption 3. Assume the prime p > 0 is very good for G.
7
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Working in very good characteristic is necessary in many places throughout this thesis. The

following table summarises the very good primes for groups with irreducible root systems:

Type of G Very good primes

An p ∤ n+1

Bn, Cn, Dn p > 2

G2, F4, E6, E7 p > 3

E8 p > 5

Table 2.1: The very good primes for various G [Let05].

We are ready to state our first main theorem:

Theorem 4. The character stack X is potentially rational count with counting function given in

Theorem 57. Furthermore, if g≥ 1 then X is potentially polynomial count.

From the counting function, we extract the following information:

Theorem 5. Unless (g,n) = (0,3) or (1,1), the character stack is non-empty of dimension

dim(X) = (2g−2+n)dim(G)+2dim(Z)−n · rank(G)

with number of components equal to

|π0(X)|= |π0(Z(Ǧ))|

where Z(Ǧ) is the centre of the Langlands dual group Ǧ.

So far, we have only analysed the character stack, and we now turn our attention to the character

variety. To analyse the character variety, we choose conjugacy classes generically:

Definition 6. We say a tuple C= (C1, . . . ,Cn) of semisimple conjugacy classes of G is generic if

n

∏
i=1

Xi /∈ [L,L]

for all proper Levi subgroups L of G and for all Xi ∈Ci∩L.

Choosing conjugacy classes generically in this manner generalises that of [HLRV11]. In this

paper, the authors consider G=GLn and a generic choice of conjugacy classes implies G/Z acts freely

on R [HLRV11, Proposition 2.1.4]. Thus, in their setting, one concludes X and X are isomorphic.

Our situation is slightly more subtle. Specifically, we have our next main theorem:

Theorem 7. Suppose C is generic. Then G/Z acts on R with finite étale stabilisers, R is smooth and

equidimensional, X is a smooth Deligne-Mumford stack, X is a coarse moduli space for X, and X

and X have the same number of points over finite fields.

Combining Theorems 4 and 7 yields the following:
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Theorem 8. If C is generic then X and X are potentially polynomial count. Moreover, they have

equal counting polynomials (with an expression given in Theorem 62) and this counting polynomial

is independent of C.

We compute the character variety’s dimension and number of components in all cases:

Theorem 9. If C is generic then the character variety is non-empty of dimension

dim(X) = (2g−2+n)dim(G)+2dim(Z)−n · rank(G)

with number of components equal to

|π0(X)|= |π0(Z(Ǧ))|

where Z(Ǧ) is the centre of the Langlands dual group Ǧ.

We also compute the character variety’s Euler characteristic in all cases:

Theorem 10. Suppose C is generic.

(i) If g > 1 then χ(X) = 0,

(ii) If g = 1 and dim(Z)> 0 then χ(X) = 0,

(iii) If g = 1 and dim(Z) = 0 then χ(X) may be non-zero, with a formula given in Theorem 65, and

(iv) If g = 0 and n≥ 3 then χ(X) may be non-zero, with a formula given in Theorem 66.

When G = GLn and g = 0, one can calculate χ(X) using [HLRV11, Theorem 1.2.3] or [Mel20,

Theorem 7.10] but this is “complicated due to the presence of high-order poles” [HLRV11, Remark

5.3.4]. Our formula does not have this issue; it only involves differentiating a smooth function.

Lastly, we prove the character variety obeys a specialisation of curious Poincaré duality:

Theorem 11. If C is generic then ||X|| is a palindromic polynomial; i.e.,

||X||(q) = qdim(X)||X||(1/q).

This is the first time this specialisation of curious Poincaré duality has been demonstrated for

character varieties associated to general reductive groups; in [KNP23], the counting polynomials

were not always palindromic.

Our formula for the counting polynomial of character varieties involves well-known representation-

theoretic data. There are several computer algebra systems which calculate this data, allowing one

to quickly and automatically compute counting polynomials. These systems include the CHEVIE

system in GAP and Julia [GHL+96] and the Magma computer algebra system [BCP97]. The ideas

found in this thesis have been developed into a package for Julia found at

https://github.com/baileywhitbread/CharacterVarieties.jl.

https://github.com/baileywhitbread/CharacterVarieties.jl
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2.2 Further directions

We conclude by discussing research directions warranting further attention:

(i) Associated to X is the mixed Poincaré polynomial Hc(X;q, t) which provides important infor-

mation about the Frobenius’ action on the (compactly supported) cohomology of X [LRV23,

§2.2]. When X is polynomial count, the counting polynomial is recovered by setting t = −1

in the mixed Poincaré polynomial [LRV23, Theorem 2.9]. Therefore, proving X is polynomial

count and obtaining an explicit expression for ||X|| is a step towards a formula for Hc(X;q, t). For

instance, when G = GLn, there is a conjectural formula for Hc(X;q, t) when C is a generic col-

lection of (not necessarily regular) semisimple conjugacy classes [HLRV11, Conjecture 1.2.1].

Moreover, there is a known formula for Hc(X;q, t) when G = GL2 and n = 1 with conjugacy

class representative
(−1

−1

)
[HRV08, Theorem 1.1.3].1

(ii) There is an additive analogue to our situation. Let g = Lie(G) with Lie bracket [·, ·] and recall

G acts on g by the adjoint action g ·x := Adg(x). Let t= Lie(T ), fix adjoint orbits O1, . . . ,On of

regular elements x1, . . . ,xn ∈ t and define the additive representation variety

A :=
{
(a1,b1, . . . ,ag,bg,y1, . . . ,yn)∈ g2g+n

∣∣∣∣ [a1,b1]+ · · ·+[ag,bg]+y1+ · · ·+yn = 0, yi ∈Oi

}
.

This inherits the adjoint action of G on g, so we form the additive character variety Y :=A//G.

It has recently been shown Y is polynomial count when G is a connected split reductive group

over Fq with connected centre [Gia25]. Moreover, the additive character variety is conjectured

to have deep links to the multiplicative character variety when G = GLn [HLRV11, Remark

1.3.2]. Precisely, at the level of polynomials, it is conjectured ||Y|| is equal to the ‘pure part’ of

Hc(X;q, t) [HLRV11, §1.2.1], providing constraints for what Hc(X;q, t) can be.

(iii) In this thesis, we assume T is split and we require an understanding of principal series represen-

tations. We appeal to an exclusion theorem (Proposition 25) and a well-known Hecke algebra

(Proposition 26). In particular, EndG(RG
T θ) is isomorphic to a Hecke algebra. To remove the

split assumption, we must instead understand the aforementioned endomorphism algebra when

T is non-split. To do so, one appeals to the general exclusion theorem of Deligne–Lusztig
characters [GM20, Theorem 2.3.2] and cyclotomic Hecke algebras [GM20, §A.6].

(iv) We expect our results hold when G has disconnected centre. In this thesis, we assume G has

connected centre to ensure semisimple centralisers in the dual group are connected reductive

groups, and to use a simplified version of Lusztig’s Jordan decomposition. One reason for

expecting generalisation is our results closely mirror those of [Cam17], where an Sp2n-character

variety is studied. Our work does not address this character variety since the centre of Sp2n

is disconnected. An instance of Lusztig’s Jordan decomposition without the assumption of a

connected centre is [GM20, Theorem 4.8.24].

1In [HRV08, HLRV11], the authors consider the mixed Hodge polynomial, rather than the mixed Poincaré polyno-
mial, which is an invariant associated to the character variety over C, rather than the character variety over Fq.



Chapter 3

Recollections on finite reductive groups

Frobenius’ formula involves irreducible characters of finite reductive groups. Therefore, we dedicate

this chapter to recalling the relevant theory. The primary references are [DL76,Car93,DM20,GM20].

Throughout this chapter, we work with a connected split reductive group G over k = Fq with con-

nected centre Z(G) = Z. Fix a maximal split torus T ⊆G and let (G,T ) have root datum (X ,Φ, X̌ ,Φ̌)

with Weyl group W . We also fix a Borel subgroup B ⊆ G so that Φ has positive roots Φ+ and sim-

ple roots ∆. Then G has Langlands dual Ǧ, which is a connected split reductive group over k with

maximal split torus Ť := Spec(k[X ]) and with (Ǧ, Ť ) having root datum (X̌ ,Φ̌,X ,Φ).

We start by defining several families of groups which are crucial to this thesis (namely, pseudo-

Levi subgroups, Levi subgroups and endoscopy groups) in §3.1. Afterwards, we explain a deep result

in representation theory which parameterises the irreducible characters of finite reductive groups in

§3.2. We briefly review polynomials describing the cardinality of connected split reductive groups

and the degrees of irreducible characters in §3.3. In §3.4, we closely examine an important family ir-

reducible characters, called principal series characters, which play a key role in our point-count of the

character variety. Lastly, in §3.5, we gather necessary facts about Alvis–Curtis duality, an important

duality of characters which will help us to analyse counting polynomials of character varieties.

3.1 Pseudo-Levi subgroups and endoscopy groups

In this section, we review several families of groups associated to G which are crucial in this thesis.

The key objects in this section are pseudo-Levi subgroups, Levi subgroups, endoscopy groups, and

their isolated counterparts. It is important to understand these groups through their root systems,

named accordingly. To this end, let Ψ ⊆ Φ be a root subsystem and denote by G(Ψ) the connected

split reductive group over k with root datum (X ,Ψ, X̌ ,Ψ̌); this always contains T but is not always a

subgroup of G.

To begin, in Definition 6, we referred to the so-called Levi subgroups of G, defined as follows:

Definition 12. A subsystem Ψ ⊆ Φ is a Levi subsystem if it is of the form Φ∩E for some vector

subspace E ⊆ spanR(Φ). The groups G(Ψ) are called Levi subgroups of G containing T .
11
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Such subsystems will automatically be closed, justifying the name Levi subgroups. (Recall Ψ⊆Φ

is closed if α,β ∈Ψ and α +β ∈Φ then α +β ∈Ψ.) We have a convenient description of the Levi

subsystems of Φ:

Proposition 13 (Proposition 24 of [Bou02]). A subsystem Ψ⊆Φ is a Levi subsystem if and only if it

is of the form w · ⟨S⟩ for some w ∈W and S⊆ ∆. Here, ⟨S⟩ means the closed subsystem spanZ(S)∩Φ.

It is important for us to consider a larger class of closely-related subsystems and subgroups:

Definition 14. A subsystem Ψ ⊆ Φ is a pseudo-Levi subsystem if it arises as the root system of a

connected centraliser subgroup of semisimple element in G. The groups G(Ψ) are called pseudo-
Levi subgroups of G containing T .

Pseudo-Levi subsystems are characterised by Deriziotis’ Criterion [Hum95, §2.15]:

Theorem 15. Suppose Φ is irreducible with simple roots ∆ and highest root θ . Let H be a connected

reductive subgroup of G containing T with root system Ψ⊆Φ. Then Ψ is a pseudo-Levi subsystem if

and only if Ψ = w · ⟨S⟩ for some w ∈W and some proper subset S⊂ ∆⊔{−θ}.

This means the collection of pseudo-Levi subgroups of G containing T is independent of the

ground field and we know exactly what they are. It also means we can take Deriziotis’ Criterion as

a definition of pseudo-Levi subsystems. (Note Deriziotis’ formulation assumes G is simple but this

is not necessary, cf. [MS03, Proposition 30, Remark 31, Proposition 32]. It also assumes G is simply

connected so that centralisers of semisimple elements of G are connected. We ignore this because

each Si is strongly regular.)

There is also an analogue of Deriziotis’ Criterion for groups with reducible root systems which

we briefly state now. Suppose Φ = Φ1⊔·· ·⊔Φr with each Φi irreducible and simple roots ∆i. Let θ i

be the highest root of Φi and write ∆̃i := ∆i⊔{−θ i}. Then Deriziotis’ Criterion is the same as before,

but we we say Ψ is a pseudo-Levi subsystem if and only if Ψ = w · ⟨S⟩ for some w ∈W and some

proper subset S⊆ ∆̃1⊔·· ·⊔ ∆̃r.

We distinguish another important family of pseudo-Levi subgroups which will be key later:

Definition 16. A subsystem of Φ is isolated in Φ if it is not contained in a proper Levi subsystem of

Φ, and a subgroup of G containing T is isolated in G if its root system is an isolated subsystem in Φ.

We have a description of the isolated pseudo-Levi subgroups à la Deriziotis’ Criterion:

Proposition 17 (Corollary 4.3 of [Bon05]). Suppose L is a pseudo-Levi subgroup of G containing T

with root system of the form w · ⟨S⟩ for some w ∈W and S ⊂ ∆⊔{−θ}. Furthermore, suppose G is

quasisimple. Then L is isolated in G if and only if |S|= |∆|.

Using Proposition 17, we summarise the isolated pseudo-Levi subsystems below:
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Type of Φ Isolated pseudo-Levi subsystems of Φ

An, n≥ 1 An only

Bn, n≥ 2
Bn, A1×A1×Bn−2, A3×Bn−3,

A1×Dn−1, Dn, Bn−r×Dr (n−2≥ r ≥ 4)

Cn, n≥ 2
Cn, A1×Cn−1,

Cn−r×Cr (n−2≥ r ≥ 2)

Dn, n≥ 4
Dn, A1×A1×Dn−2,

Dn−r×Dr (n−4≥ r ≥ 4)
G2 G2, A2, A1×A1

F4 F4, A1×C3, A2×A2, A1×A3, B4

E6 E6, A1×A5, A2×A2×A2

E7 E7, A7, A1×D6, A2×A5, A1×A3×A3

E8
E8, A1×E7, A2×E6, A3×D5, A4×A4,

A1×A2×A5, A1×A7, A8, D8

Table 3.1: The isolated pseudo-Levi subsystems of irreducible root systems.

Rather than work with the pseudo-Levi subsystems of Φ̌ and pseudo-Levi subgroups of Ǧ, we

often work with endoscopy subsystems of Φ and endoscopy groups of G, defined as follows:

Definition 18. A subsystem Ψ⊆ Φ is an endoscopy system if Ψ̌ is a pseudo-Levi subsystem of Φ̌. A

connected split reductive group K (not necessarily a subgroup of G) is an endoscopy group of G if

the dual group Ǩ is a pseudo-Levi subgroup of Ǧ containing Ť .

Endoscopy groups of G need not lie in G. For instance, consider G = SO13. Then Ǧ = Sp12

contains a pseudo-Levi subgroup Sp6×Sp6, so SO7×SO7 is an endoscopy group of SO13. However,

it cannot be a subgroup of SO13 because B3×B3 does not arise in the Borel–de Siebenthal algorithm

(which determines all possible closed subsystems of Φ) applied to B7 [Kan01, §12].

We define isolated endoscopy groups analogously:

Definition 19. An endocopy subsystem Ψ⊆Φ is isolated in Φ if Ψ̌ is not contained in a proper Levi

subsystem of Φ̌. Then an endoscopy group of G containing T is isolated with respect to G if its root

system is an endoscopy subsystem isolated in Φ.1

Lastly, we collect important properties of isolated endoscopy groups and Levi subgroups:

Proposition 20. If L is an isolated endoscopy group of G containing T then Z(L)◦ = Z(G)◦. More-

over, the same is true if L is an isolated pseudo-Levi subgroup of G containing T .

Proof. Since L is isolated with respect to G, we have rank(L) = rank(G). Then

dim(T )−dim(Z(L)) = rank(L) = rank(G) = dim(T )−dim(Z(G)),

so dim(Z(L)) = dim(Z(G)) and we must have dim(Z(L)◦) = dim(Z(G)◦), cf. [Gec13, Proposition

1.3.13, Corollary 1.3.14] and therefore Z(L)◦ = Z(G)◦ since both lie in T .
1We use phrases ‘endoscopy group of G’ and ‘isolated with respect to G’ because the endoscopy may not lie in G.
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Proposition 21. If L is an isolated endoscopy group of G containing T then T ∩ [L,L] = T ∩ [G,G].

Proof. If G is semisimple then L is semisimple too and T ∩ [L,L] and T ∩ [G,G] both equal T . If

G is not semisimple then observe three facts: [G,G] and [L,L] are semisimple, [L,L] is isolated with

respect to [G,G], and T ∩ [G,G] is a maximal split torus of [G,G]. Then the semisimple case implies

T ∩ [L,L] = T ∩ ([G,G]∩ [[L,L], [L,L]]) = T ∩ ([G,G]∩ [[G,G], [G,G]]) = T ∩ [G,G].

Proposition 22. If L is a Levi subgroup of G containing T with rank[L,L] = rank[G,G] then L = G.

Proof. Observe L and G have the same number of simple roots since [L,L] and [G,G] do. Since the

root system of L must be generated by a subset of the simple roots of G, we must have L = G.

We give two important examples to keep in mind when navigating pseudo-Levi subsystems, Levi

subsystems and isolated pseudo-Levi subsystems.

Firstly, consider G = SO5. We have Φ = B2 = ⟨α,β ⟩ with highest root θ = 2α +β . Computing

w · ⟨S⟩ for all w ∈W and S⊂ ∆⊔{−θ} yields seven pseudo-Levi subsystems:

(i) B2,

(ii) A1×A1 ≃ ⟨β ,θ⟩,

(iii) A1 ≃ ⟨β ⟩ ≃ ⟨θ⟩,

(iv) A′1 ≃ ⟨α⟩ ≃ ⟨α +β ⟩, and

(v) /0.

Clearly, the Levi subsystems are B2, ⟨α⟩, ⟨β ⟩ and /0, and the isolated pseudo-Levi subsystems are

B2 and A1×A1. We visualise the Hasse diagram of pseudo-Levi subsystems ordered by inclusion

below:

B2

A1×A1

A1 A1 A′1 A′1

/0

Secondly, consider G = G2. We have Φ = G2 = ⟨α,β ⟩ with highest root is θ = 3α +2β . Com-

puting w · ⟨S⟩ for all w ∈W and S⊂ ∆⊔{−θ} yields twelve pseudo-Levi subsystems:

(i) G2,

(ii) A2 ≃ ⟨β ,3α +β ⟩,

(iii) A1×A′1 ≃ ⟨α,3α +2β ⟩
≃ ⟨β ,2α +β ⟩ ≃ ⟨α +β ,3α +β ⟩,

(iv) A1 ≃ ⟨β ⟩ ≃ ⟨3α +β ⟩ ≃ ⟨3α +2β ⟩,

(v) A′1 ≃ ⟨α⟩ ≃ ⟨α +β ⟩ ≃ ⟨2α +β ⟩,

(vi) /0.
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The Levi subsystems are G2, ⟨α⟩, ⟨β ⟩ and /0, and the isolated pseudo-Levi subsystems are G2,

A2 and all copies of A1×A1. We visualise the Hasse diagram of pseudo-Levi subsystems ordered by

inclusion below:

G2

A2 A1×A1 A1×A1 A1×A1

A1 A1 A1 A1 A1 A1

/0

3.2 Lusztig’s Jordan decomposition

One of the deepest results in the representation theory of finite reductive groups is Lusztig’s Jordan

decomposition of the set of complex irreducible characters Irr(G(Fq)), which we will call the set of

G(Fq)-characters from now on. In essense, it says we can parameterise G(Fq)-characters using two

pieces of data: a conjugacy class of a semisimple element x ∈ Ǧ, and a so-called unipotent character

of the centraliser subgroup Ǧx.

In general, centraliser subgroups Ǧx of semisimple elements are not connected reductive groups,

complicating the definition of unipotent characters (e.g., take Ǧ = PGL2 and x =
(

1
−1

)
). However,

under our assumptions, the aforementioned centraliser subgroups are connected. This is guarenteed

if the derived subgroup of Ǧ is simply connected [Car93, Theorem 3.5.4, Theorem 3.5.6], which

happens if G has a smooth connected centre [DL76, Proposition 5.23]. We assume char(Fq) is very

good for G, ensuring smoothness of the connected centre [DL76, p. 131].

We say a G(Fq)-character is unipotent if it appears as a summand in the Deligne–Lusztig char-

acter RG
T ′ 1 for some maximal torus T ′ ⊆ G. Deligne–Lusztig characters are defined using a deep

blend of algebraic geometry, number theory and representation theory which we will not discuss,

but these characters are explained in [DL76, Car93, DM20, GM20]. The set of unipotent characters

is denoted Uch(G(Fq)). A unipotent character is called principal if it appears as a summand in

RG
T 1 = IndG(Fq)

B(Fq)
1.2 Such characters are key to our point-count of the character variety.

Remarkably, Lusztig completely classified unipotent characters. Moreover, they admit uniform

parameterisations and their degrees are known [GM20, Theorem 4.5.8]. This is due to Lusztig’s

theory of symbols in classical type [Lus77] and case-by-case analysis in exceptional type [Lus84].

We now state Lusztig’s Jordan decomposition:

Theorem 23 (Theorem 4.23 of [Lus84]). If G has connected centre then there is a bijection

Irr(G(Fq))←→
⊔

[x]⊆Ǧ(Fq)
[x]semisimple

conjugacy class

Uch(Ǧx(Fq)),

2The fact that Deligne–Lusztig induction reduces to plain induction is proven in [Car93, Proposition 7.2.4].
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such that if χ ∈ Irr(G(Fq)) is paired with ρ ∈ Uch(Ǧx(Fq)) then χ(1) and ρ(1) are related by

|G(Fq)|
χ(1)

= q|Φ(Ǧ)+|−|Φ(Ǧx)
+| |Ǧx(Fq)|

ρ(1)
.

In other words, there is a bijection from the set of G(Fq)-characters to the set of pairs ([x],ρ)

where [x] is a Ǧ(Fq)-conjugacy class of a semisimple x ∈ Ǧ and ρ is a unipotent character of Ǧx(Fq).

Moreover, this bijection allows us to keep track of dimensions of G(Fq)-characters.

It will be important later in Chapter 4 to pin down an exact bijection; there are potentially multiple

bijections satisfying the degree formula. Precisely, we use the unique bijection guarenteed by [GM20,

Theorem 4.7.1]. We will use this bijection later in §4.1.

3.3 Order polynomials and degree polynomials

It is well-known that the orders of connected split reductive groups over Fq and the degrees of their

irreducible characters are polynomials in q. That is, we have |G(Fq)|= ||G||(q) for some polynomial

||G|| and, given χ ∈ Irr(G(Fq)), we have χ(1) = ||χ||(q) for some polynomial ||χ|| [GM20]. We call

||G|| the order polynomial of G and ||χ|| the degree polynomial of χ .3

To count points on the character variety, we need a description of |G(Fq)|:

Proposition 24 (Theorem 1.6.7 of [GM20]). Let B be a Borel subgroup of G containing T , let U be

the unipotent radical of B and write PW (q) :=∑w∈W qlength(w) for the Poincaré polynomial of W. Then

|G(Fq)|= |U(Fq)| · |T (Fq)| · |(G/B)(Fq)|= q|Φ
+|(q−1)dim(T )PW (q).

We give three examples of order polynomials:

(i) If G = GL3 then Φ≃ A2, dim(T ) = 3 and W ≃ S3. Thus,

||GL3 ||(q) = |GL3(Fq)|= q3(q−1)3(q3 +2q2 +2q+1).

(ii) If G = SO5 then Φ≃ B2, dim(T ) = 2 and W ≃ D8. Thus,

||SO5 ||(q) = |SO5(Fq)|= q4(q−1)2(q4 +2q3 +2q2 +2q+1).

(iii) If G is the semisimple group of adjoint type G2 then Φ≃ G2, dim(T ) = 2 and W ≃ D12. Thus,

||G||(q) = |G(Fq)|= q6(q−1)2(q6 +2q5 +2q4 +2q3 +2q2 +2q+1).

3.4 Principal series characters

In view of Frobenius’ formula, we must evaluate G(Fq)-characters at strongly regular elements of T

in order to count points on the character variety. A deep theorem due to Deligne–Lusztig describes
3We do not need a formula for ||χ||(q), but one is given in [GM20, Definition 2.3.25].
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these character values using the so-called principal series characters of G(Fq) [DL76, Corollary 7.6].

To this end, we review these characters and their relevant properties now.

A principal series character is a G(Fq)-character appearing as summand in

RG
T θ = IndG(Fq)

B(Fq)
θ̃

for some θ ∈ T (Fq)
∨, where T (Fq)

∨ := Hom(T (Fq),C×) denotes the Pontryagin dual of the finite

abelian group T (Fq) and θ̃ : B(Fq)→ C× is the usual inflation of θ from T (Fq) to B(Fq).

A key observation is principal series characters obey a special dichotomy.4 Before we state it,

recall W acts on T (Fq)
∨ in the following manner. The Weyl group W acts on T (Fq) by w ·S := ẇSẇ−1,

where ẇ is any lift of w (i.e., w= ẇT ∈W =NG(T )/T ). This action is well-defined since ẇ normalises

T . Then W acts on T (Fq)
∨ by (w ·θ)(S) := θ(w ·S).

We now state the dichotomy of principal series characters:

Proposition 25 (Corollary 6.3 of [DL76]). Given θ ,θ ′ ∈ T (Fq)
∨, exactly one of the following is true:

(i) RG
T θ and RG

T θ ′ share no irreducible summands (up to isomorphism), or

(ii) θ and θ ′ are related by the action of W on T (Fq)
∨ in which case RG

T θ ≃ RG
T θ ′.

A deeper understanding of principal series characters is afforded by a certain Hecke algebra
denoted H(G,θ). This is the unital associative C-algebra of functions f : G(Fq)→ C satisfying

f (bgb′) = θ̃(b) f (g)θ̃(b′) for all g ∈ G(Fq) and b,b′ ∈ B(Fq), with convolution product

( f f ′)(g) := ∑
xy=g

f (x) f ′(y).

The utility of Hecke algebras is as follows. Irreducible finite-dimensional complex H(G,θ)-

characters are in bijection with irreducible constituents of RG
T θ . Moreover, the multiplicity of an

irreducible consistituent of RG
T θ is recorded by the dimension of the associated H(G,θ)-character.

Both of these claims follow from the Double Centraliser Theorem [EGH+11, Theorem 5.18.1] in

light of the isomorphism H(G,θ)≃ EndG RG
T θ . Another proof is given in [CR81, Theorem 11.25].

Furthermore, it is well-known (e.g., via Tits’ deformation theorem [GP00, Theorem 7.4.6], orig-

inally proven in [CIK71, Theorem 1.11]) that H(G,θ) is isomorphic to the group algebra C[Wθ ],

and this isomorphism preserves isomorphism classes of irreducible representations. Here, Wθ is the

stabiliser subgroup of θ under the action of W on T (Fq)
∨, and is a Coxeter group because G has

connected centre [DL76, 5.13].

We summarise the above in the following proposition:

Proposition 26. If G has connected centre then there are canonical bijections Irreducible

constituents of RG
T θ

←→
 Irreducible

representations of H(G,θ)

←→
 Irreducible

representations of Wθ


such that if χ ∈ RG

T θ has image ζ ∈ Irr(H(G,θ)) and φ ∈ Irr(Wθ ), then

⟨χ,RG
T θ⟩= dim(ζ ) = dim(φ).

4This dichotomy is a special case of the exclusion theorem [GM20, Theorem 2.3.2].
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3.5 Alvis–Curtis duality of characters

Alvis–Curtis duality was originally defined in [Alv79, Cur80] as a generalisation of the relationship

between the trivial and Steinberg representations of G(Fq). It has been noted as early as [HRV08,

Hau13] that this duality is responsible for the palindromicity of the counting polynomials of GLn-

character varieties. As we shall see, this is also the case for the character varieties in this thesis. For

our purposes, Alvis–Curtis duality is useful because it yields an expression for ||χ||(1/q), originally

proven in [Alv82, Corollary 3.6]. That is, it allows us to invert q in the polynomial describing the

character degree χ(1).

We recall the necessary properties of Alvis–Curtis duality now:

Proposition 27. There is an involution DG on the space of complex-valued G(Fq)-class functions,

defined explicitly in [DM20, §7.2] and [GM20, §3.4], with the following properties:

(i) If χ ∈ RG
T θ then DG(χ) ∈ RG

T θ ,

(ii) If χ ∈ RG
T θ is matched with φ ∈ Irr(Wθ ) according to Proposition 26 then DG(χ) is matched

with φ ⊗ sgn, where sgn ∈ Irr(Wθ ) is the sign character of Wθ , and

(iii) If χ ∈ RG
T θ then ||DG(χ)||(q) = q|Φ(G)+|||χ||(1/q),

Proof. The first part is a weaker version of [DM20, Corollary 7.2.9], the second part is [DM20,

Proposition 7.2.13], and the third part is [GM20, Proposition 3.4.21].

For example, if G = GL3 and θ is trivial then Wθ ≃ S3 and

RG
T 1 = IndG(Fq)

B(Fq)
1 = triv⊕χ

⊕2
q2+q⊕St.

Here, χq2+q is the unipotent character of degree q2 + q and St is the Steinberg character. According

to Proposition 26, the trivial GL3(Fq)-representation is matched with the trivial S3-character, the

Steinberg representation is matched with the sign character of S3, and χq2+q is matched with the two-

dimensional character φ2D ∈ Irr(S3). We know sgn⊗ sgn = triv so DG(St) = triv and DG(triv) = St,

and φ2D⊗ sgn = φ2D so DG(χq2+q) = χq2+q. We give a visualisation below:

S3-characters: triv sgn φ2D

unipotent GL3(Fq)-characters: triv St χq2+q

−⊗sgn

−⊗sgn

−⊗sgn

DG

DG

DG



Chapter 4

The type of a G(Fq)-character

In this chapter, we introduce the type of a G(Fq)-character. This is data independent of the ground

field which remembers enough information about the character to evaluate expressions appearing in

Frobenius’ formula. The idea of a type follows naturally from Lusztig’s Jordan decomposition of

Irr(G(Fq)) (cf. Theorem 23). Our types are closely connected to those used in [HLRV11, Cam17] to

count points on GLn- and Sp2n-character varieties; these connections are explained in §4.3 and §4.4.

But first, we define types in §4.1 and explain their main benefit in §4.2.

4.1 G-types and the type map

Consider the collection of pairs (L,ρ) where L is an endoscopy group of G containing T and ρ is

a principal unipotent character of L(Fq). Since W acts on the root system of G, it also acts on the

collection of pairs (L,ρ) by w · (L,ρ) := (L′,ρ ′), where L′ = ẇLẇ−1 and ρ ′(ℓ) := ρ(ẇℓẇ−1).1

We are ready to define G-types:

Definition 28. A G-type is the W-orbit of a pair (L,ρ), denoted τ = [(L,ρ)] =: [L,ρ].

The set of G-types is denoted T(G). This set is independent of q and depends only on the root

datum of G by Proposition 15 and [GM20, Theorem 4.5.8]. We have defined G-types for two reasons,

which we explain now.

The first reason is Lusztig’s Jordan decomposition implies there is a type map

T : {Principal series characters of G(Fq)}→ T(G), T (χ) = [L,ρ],

where L and ρ are determined using Lusztig’s Jordan decomposition. Explicitly, T is defined as

follows. A principal series character χ ∈ RG
T θ is well-defined up to W -conjugacy by Proposition 25.

Under the identification θ ∈ T (Fq)
∨ ≃ Ť (Fq), the dual of the centraliser subgroup Ǧθ , denoted Gθ ,

is an endoscopy group of G containing T . Moreover, a choice of irreducible summand in RG
T θ is the

same as a choice of principal unipotent character of Ǧθ (Fq) (cf. Propositition 26) which is the same

as a choice of principal unipotent character of Gθ (Fq) [GM20, Remark 2.6.5].
1The fact that ρ ′ is unipotent follows from considering π : L→ ẇLẇ−1, ℓ 7→ ẇℓẇ−1 in [GM20, Proposition 2.3.15].

19
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The second reason is Lusztig’s Jordan decomposition implies if χ is a principal series G(Fq)-

character with G-type τ = [L,ρ] then

|G(Fq)|
χ(1)

= q|Φ(G)+|−|Φ(L)+| |L(Fq)|
ρ(1)

.

This expression appears in Frobenius’ formula and we explain how this helps us count points in §4.2.

We remark that one can broaden the definition of G-types to include all endoscopy groups of G

(not just those containing T ), allowing one to define an extended type map defined on all G(Fq)-

characters, not just the principal series characters, using Lusztig’s Jordan decomposition. For in-

stance, if χ is a cuspidal character of GL2(Fq) then this extended type map sends χ to [Tnon-split, triv]

where Tnon-split is a maximal non-split torus in GL2. This is essentially the approach taken in [HLRV11,

§4.1] to count points on GLn-character varieties; see §4.3 for details.

4.2 Frobenius’ formula with types

Recall from §2.1 the representation variety

R :=
{
(A1,B1, . . . ,Ag,Bg,Y1, . . . ,Yn) ∈ G2g×

n

∏
i=1

Ci

∣∣∣∣ [A1,B1] · · · [Ag,Bg]Y1 · · ·Yn = 1
}

and recall from §1.3 that we can count points on R using Frobenius’ formula

|R(Fq)|
|G(Fq)|

= ∑
χ∈Irr(G(Fq))

(
|G(Fq)|

χ(1)

)2g−2 n

∏
i=1

χ(Si)

χ(1)
|Ci(Fq)|.

In this section, we rewrite Frobenius’ formula using the fibres of the type map, which will elucidate

several aspects of the point-count of the representation variety. To do so, we must first recall a deep

result of Deligne–Lusztig telling us how to evaluate characters at strongly regular elements:

Proposition 29 (Corollary 7.6 of [DL76]). If χ ∈ Irr(G(Fq)) and S ∈ T is strongly regular then

χ(S) = ∑
θ∈T (Fq)∨

⟨χ,RG
T θ⟩θ(S).

In particular, χ(S) = 0 unless χ is a principal series character.

This means only principal series characters contribute to the point-count of the representa-
tion variety. In light of this fact, we are ready to reformulate Frobenius’ formula using types. To this

end, fix a G-type τ = [L,ρ] and define

||τ||(q) := q|Φ(G)+|−|Φ(L)+| ||L||(q)
||ρ||(q)

and the character sum

Sτ(q) := ∑
χ∈T −1(τ)

n

∏
i=1

χ(Si),

where ||L||(q) := |L(Fq)| and ||ρ||(q) := ρ(1) (cf. §3.3).
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Proposition 30. Let R be the representation variety under Assumption 2; i.e., each Ci is the conjugacy

class of a strongly regular Si ∈ T and C1 · · ·Cn ⊆ [G,G]. Then Frobenius’ formula with types is

|R(Fq)|
|G(Fq)|

=
1

|T (Fq)|n ∑
τ∈T(G)

||τ||(q)2g−2+nSτ(q).

Proof. In view of Proposition 29, expand Frobenius’ formula using the fibres T −1(τ) to obtain

|R(Fq)|
|G(Fq)|

= ∑
τ∈T(G)

∑
χ∈T −1(τ)

(
|G(Fq)|

χ(1)

)2g−2 n

∏
i=1

χ(Si)

χ(1)
|Ci(Fq)|.

Apply the formula |G(Fq)|
χ(1) = q|Φ(G)+|−|Φ(L)+| |L(Fq)|

ρ(1) given in §4.1 to obtain

|R(Fq)|
|G(Fq)|

=

( n

∏
i=1

|Ci(Fq)|
|G(Fq)|

)
∑

τ∈T(G)

||τ||(q)2g−2+nSτ(q).

Each Si ∈ T is strongly regular, meaning CG(Si) = T , so the proof is concluded by applying the

orbit-stabiliser theorem to the conjugaction action of G(Fq) on itself.

It is important to note ||τ||(q) is a polynomial since the root system of L is contained in the root

system of G and ||ρ||(q) always divides ||L||(q) [GM20, Remark 2.3.27]. Therefore polynomiality of
|R(Fq)| is reduced to the polynomiality of Sτ(q); the latter is the focus of Chapter 6.

4.3 Green-types

In this section, we explain why G-types generalise the types seen in [HLRV11], which we call Green-
types due to their original formulation by Green [Gre55]. To this end, we recall some definitions and

fix some notation. By a partition, we mean a decreasing list of non-negative integers

λ = (λ1,λ2,λ3, . . .)

with only finitely many non-zero λi. We also denote a partition by λ = 1m12m23m3 . . . where mi > 0 is

the number of times i appears in λ . We keep track of two important statistics: the length of λ is the

smallest non-negative integer ℓ= ℓ(λ ) such that λℓ > 0, and the weight of λ is

|λ | := ∑
i≥0

λi = ∑
i≥0

imi.

Lastly, denote by P+ the set of partitions with positive weight. With the above in mind, Green-types

are defined using the following total order:

Definition 31. Define a total order ≥ on Z+×P+ by the following three conditions:

(i) If d > d′ then (d,λ )> (d′,λ ′),

(ii) If d = d′ and |λ |> |λ ′| then (d,λ )> (d′,λ ′), and

(iii) If d = d′, |λ |= |λ ′| and λ > λ ′ (according to the lexicographic order) then (d,λ )> (d′,λ ′).
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Definition 32. A Green-type is a finite chain in (Z+×P+,≥) denoted ω = (d1,λ1) . . .(ds,λs).

For Green-types, there is one important statistic

|ω| :=
s

∑
i=1

di|λi|

called the weight of ω . The Green-types of weight n are key to counting points on GLn-character

varieties. For example, the four types of weight 2 are

(1,12), (1,21), (1,11)(1,11), (2,11)

and the eight types of weight 3 are

(1,13), (1,2111), (1,31), (3,11),

(1,12)(1,11), (1,21)(1,11), (1,11)(1,11)(1,11), (2,11)(1,11).2

The relationship between Green-types and G-types is clear in light of two well-known facts:

Proposition 33. (i) The set Uch(GLn(Fq)) is in bijection with the set of partitions of n, and

(ii) Centralisers of semisimple elements of GLn(Fq) are of the form

GLn1(Fqd1 )×·· ·×GLns(Fqds ).

The former is explained in [GM20, §4.3] and the latter is explained in [DF18, §3.4.1].

Given a character χ ∈ Irr(GLn(Fq)), its Green-type is determined as follows. Use Lusztig’s Jor-

dan decomposition to associate to χ a pair ([s],ρ), where [s] is a semisimple conjugacy class in

GLn(Fq). Then its centraliser defines two lists of positive integers n1, . . . ,ns and d1, . . . ,ds, and

the unipotent character ρ defines a list of partitions λ1, . . . ,λs with each λi a partition of ni. Then

ω = (d1,λ1) . . .(ds,λs) is a Green-type of weight n.

Note the above process, and hence Green-types, are defined for any GLn(Fq)-character. However,

in this thesis, we have only defined G-types for principal series G(Fq)-characters. Therefore there

are some Green-types with no analogous GLn-type. For instance, a cuspidal GL2(Fq)-character has

Green-type (2,11) but we do not define its GLn-type. We resolved this at the end of §4.1.

We end this section by giving a table to translate between Green-types and GLn-types:

Green-type GLn-type

(1,11) . . .(1,11) [T, triv]

(1,1n1) . . .(1,1nr) [GLn1×·· ·×GLnr , triv]

(1,λ1) . . .(1,λr) [GL|λ1|×·· ·×GL|λr|,λ1⊗·· ·⊗λr]

Table 4.1: A translation between Green-types and GLn-types. The tensor product of partitions λ1⊗
·· ·⊗λr denotes the unipotent character of ∏i GLni labeled by the λi.

2The number of types of weight n is described in the OEIS entry A003606.

https://oeis.org/A003606
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4.4 Cambò-types

In this section, we explain the relationship between G-types and the types seen in [Cam17], which

we call Cambò-types. The G-types of this thesis do not generalise Cambò-types because the center

of Sp2n is disconnected. Nevertheless, we still detail these types and explain their relationship to

G-types. To this end, we recall some definitions and fix some notation.

Fix G = Sp2n and an odd prime power q. A character θ ∈ T (Fq)
∨ is identified with an element of

(F×q )n ≃Cn
q−1. Under this identification, we fix a collection of W -orbit representatives in T (Fq)

∨:

Proposition 34 (Proposition 2.4.14 of [Cam17]). The set
k1, . . . ,k1︸ ︷︷ ︸

λ1

,k2, . . . ,k2︸ ︷︷ ︸
λ2

, . . . ,kℓ, . . . ,kℓ︸ ︷︷ ︸
λℓ

,0, . . . ,0︸ ︷︷ ︸
α1

,
q−1

2
, . . . ,

q−1
2︸ ︷︷ ︸

αε

 :

1≤ ki ≤ q−3
2 ,

ki > k j if λi = λ j,

|λ |+α1 +αε = n


is a complete collection of W-orbit representatives; i.e., every orbit has exactly one representative.

For instance, if n = 2, then choosing a W -orbit amounts to choosing a pair of the form(
q−1

2
,
q−1

2

)
,︸ ︷︷ ︸

α1=0, αε=2

(
0,

q−1
2

)
,︸ ︷︷ ︸

α1=αε=1

(0,0),︸ ︷︷ ︸
α1=2, αε=0︸ ︷︷ ︸

|λ |=0

(
k1,

q−1
2

)
,︸ ︷︷ ︸

α1=0, αε=1

(k1,0),︸ ︷︷ ︸
α1=1, αε=0︸ ︷︷ ︸

|λ |=1

(k1,k1),︸ ︷︷ ︸
λ=21

(k1,k2)︸ ︷︷ ︸
λ=12︸ ︷︷ ︸

|λ |=2

where 1≤ k1,k2 ≤ q−3
2 and k1 > k2.

Definition 35. The Cambò-type of χ ∈ RG
T θ is the quadruple τ = (λ ,α1,αε ,β ) where (λ ,α1,αε)

is the W-orbit representative of θ in Proposition 34 and β ∈ Irr(Wθ ) corresponds to χ under the

bijection of Proposition 26.

In both settings, a type keeps track of a principal series character RG
T θ and one of its irreducible

summands. As an example, the sixteen Cambò-types of Sp4 are below:

W -orbit rep. θ Wθ λ α1 αε β ∈ Irr(Wθ )

(q−1
2 , q−1

2 ) D8 0 0 2 χ1, χ2, χ3, χ4, χ2D

(0, q−1
2 ) 1 0 1 1 triv

(0,0) D8 0 2 0 χ1, χ2, χ3, χ4, χ2D

(k1,
q−1

2 ) 1 11 0 1 triv

(k1,0) 1 11 1 0 triv

(k1,k1) S2 21 0 0 triv, sgn

(k1,k2) 1 12 0 0 triv

Table 4.2: Cambò-types for Sp4. The zero partition is denoted 0. The four 1-dimensional characters
of D8 are denoted χ1, . . . ,χ4 and the 2-dimensional irreducible character of D8 is denoted χ2D.



Chapter 5

Generic conjugacy classes

In this chapter, we develop the idea of choosing semisimple conjugacy classes generically. We gen-

eralise the ideas of [HLRV11] and are inspired by [Boa14]. In the latter, a similar idea for complex

reductive groups was used to conclude stability and irreducibility of certain representations and al-

lowed the author to study the so-called irregular Deligne–Simpson problem. In our setting, choosing

conjugacy classes generically has four key advantages:

(i) The G/Z-action on the representation variety has finite étale stabilisers,

(ii) The character sums Sτ(q) defined in §4.2 greatly simplify,1

(iii) The representation variety is smooth and equidimensional,

(iv) The character stack and the character variety have the same point-count,

We address the first advantage in §5.3, the second advantage in §6.5, and the third and fourth advan-

tages in §7.3. But first, we give the definition and examples of generic conjugacy classes in §5.1 and

then prove conjugacy classes can be chosen generically in the first place in §5.2.

5.1 Definition and examples

Recall from §2.1 the definition of generic conjugacy classes:

Definition 36. We say a tuple C= (C1, . . . ,Cn) of semisimple conjugacy classes of G is generic if

n

∏
i=1

xi /∈ [L,L]

for all proper Levi subgroups L of G (not necessarily those containing T ) and for all xi ∈Ci∩L.

Before seeing examples, we prove only the Levi subgroups of G containing T need to be checked:

1We obtain an expression for Sτ(q) without generic conjugacy classes, but its computation is less clear.
24
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Proposition 37. The collection of semisimple conjugacy classes C = (C1, . . . ,Cn) is generic if and

only if ∏
n
i=1 xi /∈ [L,L] for all proper Levi subgroups L of G containing T and for all xi ∈Ci∩L.

Proof. The forward implication is clear. Conversely, suppose L is an arbitrary Levi subgroup of G

and choose g ∈ G so that gLg−1 contains T . Then the result follows by observing the equivalences

n

∏
i=1

xi /∈ [L,L] ⇐⇒ g
( n

∏
i=1

xi

)
g−1 /∈ g[L,L]g−1 ⇐⇒

n

∏
i=1

gxig−1 /∈ [gLg−1,gLg−1]

and

xi ∈Ci∩L ⇐⇒ gxig−1 ∈ g(Ci∩L)g−1 =Ci∩gLg−1.

Consider the semisimple element S = diag(a,b,c) in G = GL3 representing the conjugacy class

C, where a,b,c ∈ F×q . In this section, we give necessary and sufficient conditions for C to be generic

and for C to be strongly regular, allowing us to produce four examples:

(i) A strongly regular and generic conjugacy class,

(ii) A strongly regular but not generic conjugacy class,

(iii) A generic but not strongly regular conjugacy class, and

(iv) A conjugacy class which is neither strongly regular nor generic.

Since S ∈ T , we only need to consider the proper Levis of G containing T , which are

L1 :=


GL2

GL1

 , L2 :=


GL1

GL2

 , T,

with derived subgroups

[L1,L1] =


SL2

1

 , [L2,L2] =


1

SL2

 , [T,T ] = 1.

Clearly, a necessary condition for C to be generic is abc = 1 because [L1,L1], [L2,L2] and [T,T ]

are contained in SL3. Thus, we assume c = (ab)−1, and observe three facts: S ∈ [L1,L1] if and only

if ab = 1, S ∈ [L2,L2] if and only if a = 1 and S ∈ [T,T ] if and only if a = b = 1. Thus, a necessary

and sufficient condition for C to be generic is S = diag(a,b,(ab)−1) with ab ̸= 1 and a ̸= 1 ̸= b.

On the other hand, a necessary and sufficient condition for S to be strongly regular is a ̸= b ̸= c ̸= a

because S being strongly regular means CG(S) = T [Ste65]. If c = (ab)−1 then a ̸= c if and only if

a2b ̸= 1 and b ̸= c if and only if ab2 ̸= 1.

Therefore, C is strongly regular and generic if and only if it is represented by

S = diag(a,b,(ab)−1) with a ̸= 1, b ̸= 1, ab ̸= 1, a2b ̸= 1 and ab2 ̸= 1,

C is strongly regular and but not generic if and only if it is represented by

S = diag(a,b,c) with a ̸= b ̸= c ̸= a and either ab = 1, bc = 1, a = 1 or c = 1,
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C is generic but not strongly regular if and only if it is represented by

S = diag(a,b,(ab)−1) with ab ̸= 1, a ̸= 1 and either a = b, a2b = 1 or ab2 = 1,

and C is neither strongly regular nor generic if and only if it is represented by

S = diag(a,b,c) with either ab = 1, c = 1, bc = 1 or a = 1 and either a = b, b = c or a = c.

Since G = GL3, this can be compared with [HLRV11, Definition 2.1.1].

As another example, it is proven in [Nam23, Lemma 53, Lemma 60] that if G equals SO5 or the

semisimple group of adjoint type G2 then the conjugacy class of any strongly regular element S ∈ T

is generic.

5.2 Conjugacy classes can be chosen generically

In this section, we show generic collections of strongly regular conjugacy classes exist. To this end,

let L be the set of proper Levi subgroups of G containing T . It is important to note L is a finite set

only depending on the root datum of G (cf. §3.1). Moreover, let S denote the tuple (S1, . . . ,Sn) in T n.

Recall from §3.4 that W acts on T (Fq) by w ·S := ẇSẇ−1. Then for each tuple w := (w1, . . . ,wn) in

W n, denote by w ·S the product (w1 ·S1) · · ·(wn ·Sn) in T .

Proposition 38. If S1, . . . ,Sn ∈ T satisfy w ·S /∈ [L,L] for all w∈W n and for all proper Levi subgroups

L of G containing T , then the collection (C1, . . . ,Cn) is generic.

Note such Si obviously satisfy S1 · · ·Sn ∈ [G,G] (cf. Assumption 2).

Proof. Consider elements Xi of Ci∩L for some proper Levi L of G containing T . We need to show

the product X1 · · ·Xn does not lie in [L,L]. We know Xi = giSig−1
i for some gi ∈ G. On the other

hand, Xi is a semisimple element of L, so Xi = ℓitiℓ−1
i for some ℓi ∈ L and ti ∈ T . Therefore Si and ti

are G-conjugate. Moreover, since they both lie in T , they must be W -conjugate. Thus, we can write

ti = wi · Si. Our assumption implies the product t1 · · · tn does not lie in [L,L], which means the same

for the product X1 · · ·Xn.

The following proposition guarantees such a collection of strongly regular Si exist:

Proposition 39. There exist strongly regular S1, . . . ,Sn ∈ T satisfying the condition of Proposition 38.

Proof. Suppose L is a proper Levi subgroup of G containing T . Then T ∩ [L,L] is a proper closed

subvariety of T . Moreover, there are only finitely many such Levi subgroups and finitely many

w ∈W n, so the locus of elements (S1, . . . ,Sn) ∈ T n whose conjugacy classes (C1, . . . ,Cn) are generic

is an open dense subvariety of T n. Similarly, the same is also true for those tuples (S1, . . . ,Sn) ∈
T n satisfying S1 · · ·Sn ∈ [G,G]. Lastly, strongly regular elements form an open dense set in T , so

generic conjugacy classes of strongly regular elements whose product lies in [G,G] always exist (c.f.

Assumption 2).

We will see later in §6.5 that our counting formula for the character variety does not actually de-

pend on C, provided the conjugacy classes are chosen generically. This means establishing existence

of generic conjugacy classes is sufficient for the purposes of point-counting.
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5.3 Stabilisers are finite étale

In this section, we prove every point on the representation variety has finite étale stabilisers under the

G/Z-action when conjugacy classes are chosen generically. Define the following sets:

(i) Let I be the set of isolated pseudo-Levi subgroups of G containing T , and

(ii) Let Z be the subgroup of G generated by the centres of the isolated pseudo-Levi subgroups in I.

Note I is finite, cf. Proposition 17. A key observation is the following:

Lemma 40. The group Z is an abelian group containing the centre Z of G, and Z/Z is finite.

Proof. Each isolated pseudo-Levi L ∈ I has a centre contained in T :

Z(L) =CL(L)⊆CG(L)⊆CG(T ) = T.

Then Z⊆ T so Z is abelian. Next, G is isolated in G so Z contains Z. Lastly, by Proposition 20, the

quotient Z(L)/Z is finite. Therefore Z/Z is generated by finitely many elements in the abelian group

T/Z, and these elements have finite order, so Z/Z is finite.

Now fix a point on the representation variety, denoted p = (A1,B1, . . . ,Ag,Bg,X1, . . . ,Xn). The

group Z/Z is of use due to the following:

Proposition 41. The stabiliser StabG/Z(p) lies in gZg−1/Z for some g ∈ G.

Proof. As subsets of G/Z, we have StabG/Z(p) = StabG(p)/Z. Fixing h ∈ StabG(p), it suffices to

show there exists a g ∈ G such that h ∈ gZg−1 (i.e. the g is independent of h). The desired g arises

as follows. Since X1 is strongly regular, we know CG(X1) = gT g−1. To see the inclusion h ∈ gZg−1,

first notice A1,B1, . . . ,Ag,Bg,X1, . . . ,Xn all lie in CG(h) which implies the inclusion

X1 · · ·Xn = ([A1,B1] · · · [Ag,Bg])
−1 ∈ [CG(h),CG(h)].

Now h ∈ CG(X1) = gT g−1 so h is semisimple, meaning the connected centraliser subgroup CG(h)◦

is a pseudo-Levi subgroup of G containing gT g−1. In other words, g−1CG(h)g is a pseudo-Levi

subgroup of G containing T . Furthermore, CG(h) must be isolated in G. If it were not then CG(h)⊂ L

for some proper Levi subgroup L of G, meaning X1 · · ·Xn ∈ [L,L] which contradicts genericity of C.

Thus, g−1CG(h)g is isolated too. It is straightforward to verify h ∈ Z(CG(h)) so h ∈ g−1Zg.

This establishes finiteness of the stabiliser StabG/Z(p), but we can say more:

Proposition 42. If L ∈ I then the finite group Z(L)/Z is étale.

Proof. One checks by hand using Table 2.1 and Table 3.1 that if char(Fq) is very good for G then it

is very good for every L ∈ I. Therefore char(Fq) is never a torsion prime for any L ∈ I (cf. [Ste75]),

so each Z(L)/Z is of order prime to char(Fq) and therefore étale by [Mil17, Corollary 11.31].

Corollary 43. The stabiliser StabG/Z(p) is finite étale.



Chapter 6

Formulas for the character sum Sτ(q)

Let S1, . . . ,Sn ∈ T be strongly regular elements representing conjugacy classes C1, . . . ,Cn and let τ be

a G-type. Recall from §4.2 the definition of the character sum

Sτ(q) := ∑
χ∈T −1(τ)

n

∏
i=1

χ(Si).

We saw in §4.2 that determining |R(Fq)| amounts to determining Sτ(q). In this chapter, we give

several formulas for Sτ(q), first without a generic choice of conjugacy classes, and then with one.

This chapter is the most technical chapter appearing in this thesis. In particular, in view of the

definition of polynomial count in §1.3, it is not enough to conclude that Sτ(q) is a polynomial; we

must prove the polynomial we obtain is stable under base change.1 The main point of this chapter is

we obtain a simple and stable formula for Sτ(q) when conjugacy classes are chosen generically.

To elucidate the important ideas, we evaluate Sτ(q) in two steps: when there is only one puncture

(see §6.1), and when there are multiple punctures (see §6.2). In both cases, we will see an auxiliary

sum of T (Fq)-character values appearing in our formulas. Following methods developed in [KNP23],

we explain how to evaluate these auxiliary sums in §6.3 and §6.4. Finally, we present a new and

substantial simplification of these sums in §6.5 using the presence of generic conjugacy classes.

6.1 A formula for Sτ(q): once-punctured case

Let τ = [L,ρ] be a G-type; recall that this means L is an endoscopy group of G containing T and ρ

is a principal unipotent character of L(Fq). In this section, we explain the evaluation of Sτ(q) when

there is one conjugacy class containing a strongly regular S ∈ T . In this case, Sτ(q) is given by

Sτ(q) = ∑
χ∈T −1(τ)

χ(S).

Define the auxiliary sum

αL,S(q) := ∑
θ∈T (Fq)

∨

Wθ=W (L)

θ(S).

1This is discussed in detail in §6.4.
28
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This section is dedicated to proving the following formula for Sτ(q):

Proposition 44. Under the assumptions of this section, our formula for Sτ(q) is

Sτ(q) = dim(ρ̃)
|[L]|
|W | ∑

w∈W
αL,w·S(q),

where ρ̃ is the W (L)-character associated to ρ and [L] is the W-orbit of L.

Recall W acts on T (Fq) by w · S := ẇSẇ−1, where ẇ is any lift of w (i.e., w = ẇT ∈W ). The

proof of Proposition 44 is centered around a result of Deligne–Lusztig which was used in §4.2 to

reformulate Frobenius’ formula:

Proposition 45 (Corollary 7.6 of [DL76]). If χ ∈ Irr(G(Fq)) and S ∈ T is strongly regular then

χ(S) = ∑
θ∈T (Fq)∨

⟨χ,RG
T θ⟩θ(S).

In particular, χ(S) = 0 unless χ is a principal series character.

We are ready to prove Proposition 44:

Proof. Recall from §3.4 that irreducible summands in RG
T θ are in bijection with characters of Wθ

with their multiplicities given by the corresponding Wθ -character’s dimension. Given a character

φ ∈ Irr(Wθ ), denote the corresponding irreducible summand in RG
T θ by χθ ,φ . Recall W acts on

T (Fq)
∨ by (w ·θ)(S) := θ(w ·S). Then using Proposition 45, we compute

χθ ,φ (S) = dim(φ) ∑
w∈W/Wθ

(w ·θ)(S) = dim(φ)

|Wθ | ∑
w∈W

θ(w ·S).

If χθ ,φ has type τ = [L,ρ] then the dual of Ǧθ , which we denote by Gθ , is an endoscopy group of G

containing T . Moreover, Gθ lies in the W -orbit of L, and φ ∈ Irr(Wθ ) is paired with ρ ∈ Uch(L(Fq))

according to the bijections

Irr(Wθ )←→ RǦθ

Ť
1←→ RL

T 1⊆ Uch(L(Fq)).

Denote by ρ̃ the character in Irr(W (L)) corresponding to ρ ∈ Uch(L(Fq)). Then

Sτ(q) = ∑
χ∈T −1(τ)

χ(S) = ∑
[θ ]∈T (Fq)

∨/W
Gθ∈[L]

χθ ,ρ̃(S).

Note Gθ ∈ [L] if and only if Wθ ∈ [W (L)] [DL76, Theorem 5.13]. This means

Sτ(q) = ∑
[θ ]∈T (Fq)

∨/W
Wθ∈[W (L)]

χθ ,ρ̃(S).

We write this as a sum over all θ ∈ T (Fq)
∨, rather than W -orbits [θ ] ∈ T (Fq)

∨/W . To do so, notice

χθ ,ρ̃ = χw.θ ,ρ̃ since RG
T θ ≃ RG

T w ·θ by Proposition 25. Therefore

Sτ(q) =
|W (L)|
|W | ∑

θ∈T (Fq)
∨

Wθ∈[W (L)]

χθ ,ρ̃(S).
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Lastly, we can replace the condition Wθ ∈ [W (L)] with the condition Wθ = W (L). We do so by

averaging over the orbit size |[W (L)]|= |W |/|NW (W (L))|= |[L]| (cf. [Car72, Lemma 34]), giving

Sτ(q) = |W (L)| |[L]|
|W | ∑

θ∈T (Fq)
∨

Wθ=W (L)

χθ ,ρ̃(S).

We substitute in our formula for χθ ,ρ̃(S), giving

Sτ(q) = dim(ρ̃)
|[L]|
|W | ∑

w∈W
∑

θ∈T (Fq)
∨

Wθ=W (L)

θ(w ·S) = dim(ρ̃)
|[L]|
|W | ∑

w∈W
αL,w·S(q).

6.2 A formula for Sτ(q): multi-punctured case

In this section, we explain the evaluation of Sτ(q) when there is a collection C= (C1, . . . ,Cn) contain-

ing strongly regular Si ∈ T . In this case, Sτ(q) is given by

Sτ(q) = ∑
χ∈T −1(τ)

χ(S1) · · ·χ(Sn).

In this section, we prove the following formula for Sτ(q):

Proposition 46. Under the assumptions of this section, our formula for Sτ(q) is

Sτ(q) =
dim(ρ̃)n

|W (L)|n−1
|[L]|
|W | ∑

w∈W n
αL,w·S(q).

Proof. As in the once-punctured case, fix τ = [L,ρ] and recall χ ∈ T −1(τ) if and only if χ = χθ ,ρ̃

for some θ ∈ T (Fq)
∨ with Gθ ∈ [L]. Therefore

Sτ(q) = ∑
[θ ]∈Ť (Fq)/W

Gθ∈[L]

χθ ,ρ̃(S1) · · ·χθ ,ρ̃(Sn) = |W (L)| |[L]|
|W | ∑

θ∈Ť (Fq)
Wθ=W (L)

χθ ,ρ̃(S1) · · ·χθ ,ρ̃(Sn).

Let S denote the tuple (S1, . . . ,Sn) in T n and, for each w := (w1, . . . ,wn) ∈W n, let w · S denote the

product (w1 ·S1) · · ·(wn ·Sn) in T . Then, from the once-punctured case, we know

χθ ,ρ̃(S1) · · ·χθ ,ρ̃(Sn) =
dim(ρ̃)n

|Wθ |n ∑
w1,...,wn∈W

θ(w ·S).

Plugging this into the expression for Sτ(q) above completes the proof.

6.3 An aside on Möbius inversion

Given an endoscopy group L of G containing T , we have seen in §6.1 and §6.2 that the auxiliary sum

αL,S(q) := ∑
θ∈T (Fq)

∨

Wθ=W (L)

θ(S)
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plays a key role in the determination of Sτ(q). In this section, we give a method to evaluate αL,S(q)

following [KNP23, §5]. We emphasise a new idea appearing in this thesis: genericity of conjugacy

classes yields a simple formula for αL,S(q), written in terms of isolated endoscopy groups. We explain

this simplification in §6.5. In this section, we simplify the auxililary sum as much as we can without

assuming genericity of conjugacy classes.

Our evaluation of αL,S(q) centers around an application of Möbius inversion. We briefly state a

version of the Möbius inversion formula following [Sta12, §3], and then apply it to our situation.

Consider a finite partially ordered set (P,≤), and denote the closed intervals in P by

Int(P) := {[a,b] | a,b ∈ P, a≤ b}.

Then define the incidence algebra consisting of all C-valued functions f : Int(P)→ C with multipli-

cation

( f g)([a,b]) = ( f g)(a,b) := ∑
a≤t≤b

f (a, t)g(t,b).

This is a finite-dimensional unital associative algebra over C with a few important elements:

(i) The unit 1(a,b) := 1 if a = b, and 0 otherwise,

(ii) The zeta function ζ (a,b) := 1 for all [a,b] ∈ Int(P),

(iii) The Möbius function µ := ζ−1 (which exists by [Sta12, Proposition 3.6.2]).

It is important to note the Möbius function always takes integer values, since the condition ζ µ = 1 is

the same as the recursive formula

µ(a,b) =

1, if a = b,

−∑a≤t<b µ(a, t), otherwise.

Moreover, the vector space of all functions P→C admits an action of the incidence algebra given by

(α · f )(t) := ∑
a≤t

α(a) f (a, t).

We are now ready to state the Mobius inversion formula:

Proposition 47 (Proposition 3.7.1 of [Sta12]). If α,β : P→ C are functions on P then

α(t) = ∑
a≤t

β (a)

if and only if

β (t) = ∑
a≤t

α(a)µ(a, t).

Proof. This is another way of saying α = β ·ζ if and only β = α ·µ .
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6.4 A formula for the auxiliary sum αL,S(q)

We are ready to apply Möbius inversion to our setting. Consider the partially ordered set P of en-

doscopy groups of G containing T , ordered by inclusion of their root systems, which by abuse of
notation we write as inclusion of the endoscopy groups. Define the sum

∆L,S(q) := ∑
θ∈T (Fq)

∨

Wθ⊇W (L)

θ(S),

so the Möbius inversion formula yields

αL,S(q) = ∑
L′⊇L

µ(L,L′)∆L′,S(q),

where the sum is over all endoscopy groups L′ of G containing L.

We turn our attention to evaluating ∆L,S(q), starting with an application of Pontryagin duality:

Proposition 48 (Lemma 26 of [KNP23]). Let f : A→ B be a surjective homomorphism of finite

abelian groups and f∨ : B∨→ A∨ be the Pontryagin dual f∨(ϕ) = ϕ ◦ f . For each a ∈ A, we have

∑
θ∈ f∨(B∨)

θ(a) =

|B|, if f (a) = 1,

0, otherwise.

To alleviate notation, let k = Fq. We apply this result to the (Pontryagin dual of the) natural map

fL : T (k)→ T (k)
T (k)∩ [L(k),L(k)]

.

Corollary 49 (Corollary 27 and Proposition 28 of [KNP23]). We have

∆L,S(q) =

|Ť (k)W (L)|, if fL(S) = 1,

0, otherwise.

In particular, ∆L,S(q) is zero unless S ∈ [L(k),L(k)].

In light of the above, we must understand the fixed points Ť (k)W (L). To this end, let

π
L
0 := |π0(ŤW (L))(k)|

where π0(ŤW (L)) is the component group of ŤW (L). We recall precisely what this means now (cf.

[KNP23, §4]). Recall the cocharacter lattice X̌ admits an action of W (L), and define the W (L)-

coinvariants of X̌ by

X̌W (L) := X̌/⟨x−w · x | x ∈ X̌ , w ∈W (L)⟩,

so that ŤW (L) = Speck[X̌W (L)]. Then X̌W (L) is an abelian group with torsion part Tor(X̌W (L)), and the

group of components is the k-group scheme π0(ŤW (L)) := Speck[Tor(X̌W (L))].

The following proposition explains why we introduced the group of components. Specifically, we

can now compute the sum ∆L,S(q):
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Proposition 50 (§4 of [KNP23]). Let L be an endoscopy group of G containing T . Then

(i) Ť (k)W (L) ≃ Z(Ľ) as k-group schemes,

(ii) We have |Ť (k)W (L)|= |π0(ŤW (L))(k)|× |(ŤW (L))◦(k)|, and

(iii) We have |(ŤW (L))◦(k)|= |Z(Ľ)◦(k)|= (q−1)rank(Z(L)).

Corollary 51. The sums ∆L,S(q), αL,S(q) and Sτ(q) are polynomials in q.

As stated at the beginning of this chapter, we must ensure these polynomials are stable under base

change. That is, if k′/k is a finite extension, we must ensure the above polynomials do not change.

There are two things that may go wrong if we replace k with k′:

(i) First, the integer |π0(ŤW (L))(k)| may change. This is because π0(ŤW (L)) is an étale group

scheme and the associated action of Gal(k/k) may not be trivial; i.e., the Galois action may

‘hide’ k′-points which appear after base change to k′. Since π0(ŤW (L)) is finite, this issue is

resolved by choosing k large enough in the first place so that the Galois action is trivial.

(ii) Second, in view of Corollary 49, we may have S /∈ [L(k),L(k)] but S ∈ [L(k′),L(k′)], which

means the polynomial ∆L,S(q) may change. This is because the inclusion [L(k),L(k)] ↪→ [L,L](k)

may be strict (cf. [KNP23, §5.2.1]). Since there are only finitely many endoscopy groups of G

containing T , we can resolve this issue by choosing k large enough in the first place so that this

behavior does not occur.

These two observations are why we say ‘potentially polynomial count’ in the theorems in §2.1.

The main point of this section is, after choosing k large enough as explained above, we have a formula

for αL,S(q) which is stable under base change:

Corollary 52. Let L be an endoscopy group of G containing L. If S ∈ T is strongly regular then

αL,S(q) = ∑
L′⊇L

S∈[L′(k),L′(k)]

µ(L,L′)π
L′
0 |Z(L′)◦(k)|,

where the sum is over all endoscopy groups L′ of G containing L satisfying S ∈ [L′(k),L′(k)].

6.5 A simple formula for Sτ(q): generic case

We have not yet used our generic assumption. We do so now, providing a major simplification of the

auxiliary sum αL,S(q) (and hence of Sτ(q)) via the following proposition:

Proposition 53. Suppose L is an endoscopy group of G containing T .

(i) An element of G lies in [L,L] if and only if it lies in [L(k′),L(k′)] for some finite extension k′ of k,

(ii) A generic element S lies in [L,L] if and only if L is isolated with respect to G, and

(iii) If L is isolated with respect to G then |Z(L)◦(k)|= |Z(k)|.
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Proof. (i) If x∈ [L(k′),L(k′)] for some finite extension k′/k then x∈ [L,L](k′)∩G(k) so x∈ [L,L](k).
On the other hand, if x ∈ [L,L](k) then x ∈ [L,L](k̄) so x ∈ [L(k̄),L(k̄)]. In other words, there

exists a1,b1, . . . ,ar,br ∈ L(k̄) such that x = [a1,b1] . . . [ar,br]. However, L(k̄) equals the union

of all L(k′) as k′ ranges over all finite extensions of k, proving the result.

(ii) If L is not isolated with respect to G then there exists a proper Levi M of G containing L. Since

S is generic, we must have S /∈ [M,M] so S /∈ [L,L]. On the other hand, if L is isolated with

respect to G then Proposition 21 says T ∩ [L,L] and T ∩ [G,G] are equal. The latter contains S

so S ∈ [L,L].

(iii) This follows from Proposition 20 and connectedness of Z (c.f. §2.1).

Corollary 54. If S ∈ T is strongly regular and generic then

αL,S(q) = |Z(Fq)| ∑
L′⊇L

L′ isolated

µ(L,L′)π
L′
0 ,

where the sum is over all isolated endoscopy groups L′ of G containing L.

Corollary 55. If C= (C1, . . . ,Cn) is a generic collection of strongly regular conjugacy classes then

Sτ(q) = |Z(Fq)| dim(ρ̃)n|[L]|
(
|W |
|W (L)|

)n−1

∑
L′⊇L

L′ isolated

µ(L,L′)πL′
0 .

Proof. This follows from Proposition 46.

Corollary 56. If S is generic then Sτ(q) is independent of S.

We conclude this section by using our formula to compute two important examples of Sτ(q):

(i) If τ is the G-type [G, triv] then dim(ρ̃) = 1, |[L]| = 1 and |W (L)| = |W |. Moreover, the only

endoscopy group of G containing G is G, so we only need to compute µ(G,G) = 1 and

π
G
0 = |π0(ŤW )|= |π0(Z(Ǧ)|.

Therefore

Sτ(q) = |π0(Z(Ǧ)| |Z(Fq)|.

(ii) We saw in §4.3 that choosing a GLn-type τ = [L,ρ] is the same as choosing a tuple of partitions

(λ1, . . . ,λr) with n = |λ1|+ · · ·+ |λr|; the endoscopy L is of the form GL|λ1|×·· ·×GL|λr| and

the unipotent character ρ is of the form λ1⊗·· ·⊗λr. Then

(a) dim(ρ̃) = dim(λ̃1)× ·· · × dim(λ̃r) and dim(λ̃i) is the dimension of the S|λi|-character la-

belled by λi, given by the well-known hook length formula [Mac95, I, 7.]

dim(λ̃i) =
|λi|!

∏h∈H(λi) h

where H(λi) is the multi-set of hook lengths of the partition λi,
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(b) The Weyl group W (L) is isomorphic to S|λ1|×·· ·×S|λr|,

(c) The orbit size |[L]| equals

|W |
|NW (W (L))|

=
n!

|NSn(S|λ1|×·· ·×S|λr|)|
=

n!
∏i mi!(i!)mi

,

where mi equals the number of λ j’s equal to i [DH93, p. 1545],

(d) The only isolated endoscopy group of GLn containing T is GLn itself,

(e) µ(L,GLn) = (−1)r−1(r−1)! [DH93, Theorem 1], and

(f) The centre of GLn is connected so π
GLn
0 = 1.

Therefore

Sτ(q) = (−1)r−1(r−1)!
|λ1|!×·· ·× |λr|!

∏i mi!(i!)mi

(
n!

∏h∈∪iH(λi) h

)n

(q−1).

This is the regular case of [HLRV11, Theorem 4.3.1 (1)].
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Proofs of main results

Recall the character variety is the GIT quotient

X := R//(G/Z) = R//G

and the character stack is the quotient stack

X := [R/(G/Z)].

In this chapter, we prove our main results about X and X when C is a collection of strongly regular

conjugacy classes (which are sometimes chosen generically). Specifically, we

(i) Prove X is potentially rational count and calculate its counting function in Theorem 57,

(ii) Calculate the dimension and number of components of X in Theorem 59,

(iii) Prove X and X have the same point-count when conjugacy classes are generic in Theorem 60,

(iv) Give the simplified counting polynomial of X and X in Theorem 62,

(v) Calculate the dimension and number of components of X in Theorem 63,

(vi) Calculate the Euler characteristic of X in Theorem 64, Theorem 65 and Theorem 66, and

(vii) Prove the counting polynomial of X is palindromic in Theorem 68.

7.1 Counting functions for X

In this section, we prove Theorem 4, restated here in detail:

Theorem 57. The character stack X is potentially rational count with counting function

||X||(q) = ||Z||(q)
||T ||(q)n ∑

τ∈T(G)

||τ||(q)2g−2+nSτ(q)

with notation given below. Moreover, if g≥ 1 then X is potentially polynomial count.
36
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In the above theorem, we have:

(i) ||Z||(q) = |Z(Fq)|= (q−1)dim(Z) is the counting polynomial of the centre of G,

(ii) ||T ||(q) = |T (Fq)|= (q−1)dim(T ) is the counting polynomial of the maximal split torus T ,

(iii) T(G) is the set of types of G, i.e., the W -orbits of pairs (L,ρ) where L is an endoscopy group of

G containing T and ρ is a principal unipotent character of L(Fq),

(iv) For a type τ = [L,ρ], we have

||τ||(q) := q|Φ(G)+|−|Φ(L)+| ||L||(q)
||ρ||(q)

and

Sτ(q) =
dim(ρ̃)n

|W (L)|n−1
|[L]|
|W | ∑

w∈W n
αL,w·S(q),

where:

(a) Φ(G)+ and Φ(L)+ are the positive roots of G and L, respectively,

(b) ||L||(q) = |L(Fq)| is the counting polynomial of L,

(c) ||ρ||(q) = ρ(1) is the degree polynomial of ρ ,

(d) W (L) is the Weyl group of L,

(e) ρ̃ is the character of W (L) corresponding to the principal unipotent character ρ of L(Fq),

(f) [L] is the W -orbit of L arising from the W -action on Φ,

(g) w ·S := (w1 ·S1) · · ·(wn ·Sn) with w ·S := ẇSẇ−1,

(h) αL,S(q) = ∑
L′⊇L

S∈[L′(k),L′(k)]

µ(L,L′)π
L′
0 |Z(L′)◦(k)|,

(i) µ is the Möbius function on the poset of endoscopy groups of G containing T , and

(j) πL′
0 = |π0(ŤW (L′))(k)| is the number of components of the finite étale k-group scheme ŤW (L′).

Proof. Proposition 30 and Proposition 46 imply

|X(Fq)|=
||Z||(q)
||T ||(q)n ∑

τ∈T(G)

||τ||(q)2g−2+nSτ(q),

where Sτ(q) is given by the formula above. The functions ||Z||(q), ||T ||(q), ||τ||(q) and Sτ(q) are

polynomials, and we explained in §6.4 why this formula becomes stable under base change after

passing to a large enough field extension, so X is potentially rational count. Moreover, if g ≥ 1 then

||T ||(q)n divides ||τ||(q)2g−2+n [GM20, Remark 2.3.27] so X is potentially polynomial count.
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7.2 Dimension and components of X

In this section, we determine the degree and leading coefficient of ||X||(q). Ultimately, we need the

following result. Suppose S ∈ T and L and L′ are endoscopy groups of G containing T . Then define

QL,L′,S(q) := PW (L)(q)
2g−2+n

∆L′,S(q),

where PW (L)(q) is the Poincaré polynomial of W (L) and we recall from §6.4 that

∆L,S(q) := ∑
θ∈T (Fq)

∨

Wθ⊇W (L)

θ(S).

Proposition 58 (Proposition 33 of [KNP23]). Suppose 2g−2+n≥ 2. Then degQL,L′,S is maximal if

and only if L = L′ = G.

Later in §7.5, by choosing conjugacy classes generically, we lower this to 2g− 2 + n ≥ 1 in

accordance with Assumption 1. We now prove Theorem 5, restated here:

Theorem 59. If (g,n) ̸= (0,3),(1,1) then the character stack is non-empty of dimension

dim(X) = (2g−2+n)dim(G)+2dim(Z)−n · rank(G)

with number of components equal to

|π0(X)|= |π0(Z(Ǧ))|

where Z(Ǧ) is the centre of the Langlands dual group Ǧ.

Proof. We claim only τ = [G, triv] contributes to the top degree of ||X||. Assuming the claim, calcu-

lating the degree and leading coefficient of

||Z||(q)
||T ||(q)n ||τ||(q)

2g−2+nSτ(q)

when τ = [G, triv] is straightforward and completes the proof. To prove the claim, fix a G-type

τ = [L,ρ]. In view of §7.1, the degree of Sτ(q) does not depend on ρ . Moreover, from §3.3, we have

deg ||τ||= |Φ(G)+|+dim(T )+degPW (L)−deg ||ρ||

which is maximised if and only if ρ = triv [GM20, Proposition 4.5.9]. This means the only types

contributing to the top degree of ||X||(q) are of the form τ = [L, triv]. Assuming τ = [L, triv], we have

||τ||(q) = q|Φ(G)+|(q−1)dim(T )PW (L)(q).

From §7.1 and §6.4, we have

Sτ(q) = ∑
w∈W n

∑
L′⊇L

C(G,L,L′)∆L′,w·S(q)

where the sum is over all endoscopy groups L′ of G containing L and C(G,L,L′) is some rational

number dependent only on the root datum of G, L and L′ and not on q. Therefore

||τ||(q)2g−2+nSτ(q) = F(q) ∑
w∈W n

∑
L′⊇L

C(G,L,L′) PW (L)(q)
2g−2+n

∆L′,w·S(q)︸ ︷︷ ︸
QL,L′,w·S(q)

where F(q) is independent of L. Applying Proposition 58 completes the proof of the claim.
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7.3 X and X have the same point-count

In this section, we prove Theorem 7, restated here:

Theorem 60. If C is generic then:

(i) G/Z acts on R with finite étale stabilisers,

(ii) R is smooth and equidimensional,

(iii) X is a smooth Deligne-Mumford stack,

(iv) X is the coarse moduli space for X, and

(v) X and X have the same number of points over finite fields.

Proof. (i) This is Corollary 43.

(ii) This follows from an application of the Regular Value Theorem and is already known when

the G/Z-action is free [KNP23, Theorem 1]. In our setting, the G/Z-action is not necessarily

free, but the aforementioned proof still works with one modification. The key difference is G/Z

acting freely on R implies StabG(p) = Z for each p ∈ R (because StabG/Z(p) = StabG(p)/Z)

and this is used in [KNP23, §2.1.7] to conclude Lie(StabG(p)) = Lie(Z) = 0. In our setting, we

have Lie(StabG(p)/Z) = Lie(StabG/Z(p)) = 0 by Corollary 43 so the same proof works.

(iii) In view of [Ols16, Remark 8.3.4], Corollary 43 implies X is a Deligne–Mumford stack. Since

R and G/Z are smooth, the smoothness of X follows, cf. [Ols16, §8.2].

(iv) To identify the coarse moduli space, we show all orbits of the G/Z-action on R are closed

(this implies, for every algebraically closed field K, the map X(K)→ X(K) is bijective, cf.

[Ols16, Definition 11.1.1]). Observe the action map

G/Z×R→ R×R, (gZ, p) 7→ (g · p, p)

is proper by [MFK94, Proposition 0.8] and Corollary 43. Proper maps are closed so the image

of G/Z×{x} is closed. This image is OrbG/Z(x)×{x} so the orbit OrbG/Z(x) is closed.

(v) This follows from [Beh91, Corollary 2.3.3] which says that if S is a finite étale group over Fq

then the groupoid cardinality of the classifying stack BS over Fq equals

|BS(Fq)|= ∑
ξ

1
|Aut(ξ )|

= 1.

The stabilisers StabG/Z(p) were shown to be finite étale groups in Corollary 43, so applying the

formula yields to result. See also [vdBE05, §2] and [BFP24, Proposition 1.3].

Corollary 61. If C is generic then

|X(Fq)|= |X(Fq)|=
|R(Fq)|
|(G/Z)(Fq)|

=
||Z||(q)
||T ||(q)n ∑

τ∈T(G)

||τ||(q)2g−2+nSτ(q).
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7.4 Counting polynomials for X

In this section, we prove Theorem 8, restated here in detail:

Theorem 62. If C is generic then X is potentially polynomial count with counting polynomial

||X||(q) = ||Z||(q)
||T ||(q)n ∑

τ∈T(G)

||τ||(q)2g−2+nSτ(q).

Above, the notation is the same as Theorem 57, except

Sτ(q) = |Z(Fq)| dim(ρ̃)n |[L]|
(
|W |
|W (L)|

)n−1

ν(L),

where

ν(L) := ∑
L′⊇L

L′ isolated

µ(L,L′)π
L′
0

is a sum over all isolated endoscopy groups L′ of G containing L.

Proof. Corollary 55, Theorem 57 and Corollary 61 imply

|X(Fq)|=
||Z||(q)
||T ||(q)n ∑

τ∈T(G)

||τ||(q)2g−2+nSτ(q).

The functions ||Z||(q), ||T ||(q), ||τ||(q) and Sτ(q) are polynomials, and we explained in §6.4 why this

formula becomes stable under base change after passing to a large enough field extension, so X is

potentially polynomial count.

7.5 Dimension and components of X

In this section, we prove Theorem 9, restated here:

Theorem 63. If C is generic then the character variety is non-empty of dimension

dim(X) = (2g−2+n)dim(G)+2dim(Z)−n rank(G)

with number of components equal to

|π0(X)|= |π0(Z(Ǧ))|,

where Z(Ǧ) is the centre of the Langlands dual group Ǧ.

Proof. We claim only τ = [G, triv] contributes to the top degree of ||X||. The degree of Sτ(q) is always

dim(Z) by Corollary 55, so we just maximise deg ||τ||. From §3.3, this equals

deg ||τ||= |Φ(G)+|− |Φ(L)+|+dim(L)−deg ||ρ||= |Φ(G)+|+dim(T )+degPW (L)−deg ||ρ||

and is maximised if and only if τ = [G, triv] [GM20, Proposition 4.5.9]. The degree and leading

coefficient of ||X|| follows, noting that if τ = [G, triv] then the leading coefficient of

||Z||(q)
||T ||(q)n ||τ||(q)

2g−2+nSτ(q)

is πG
0 = |π0(Z(Ǧ))|.
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7.6 Euler characteristic

In this section, we prove Theorem 10 which concerns the Euler characteristic of X. We split the

statement and proof over the next three theorems.

Theorem 64. Suppose C is generic.

(i) If g > 1 then χ(X) = 0, and

(ii) If g = 1 and dim(Z)> 0 then χ(X) = 0.

Proof. We rewrite

||X||(q) = ||Z||(q) ∑
τ∈T(G)

||τ||(q)2g−2
(
||τ||(q)
||T ||(q)

)n

Sτ(q).

We saw in the proof of Theorem 57 that ||T ||(q) divides ||τ||(q) so ||Z||(q), ||τ||(q)2g−2, ||τ||(q)||T ||(q) and

Sτ(q) are all polynomials as long as g≥ 1. If g > 1 then 2g−2 > 0 and one checks ||τ||(1)2g−2 = 0 so

χ(X) = ||X||(1) = 0. Similarly, if g = 1 and dim(Z)> 0 then ||Z||(1) = 0 so χ(X) = ||X||(1) = 0.

Theorem 65. Suppose C is generic. If g = 1 and dim(Z) = 0 then

χ(X) = |W |n−1
∑
L
|W (L)| | Irr(W (L))|ν(L),

where the sum is over all endoscopy groups L of G containing T , and

ν(L) := ∑
G⊇L′⊇L
L′ isolated

µ(L,L′)π
L′
0 .

In the definition of ν(L), the sum is over all isolated endoscopy groups of G containing L.

Proof. Expanding the sum over τ and rearranging yields

||X||(q) = ∑
[L]

q|Φ(G)+|−|Φ(L)+|
(
||L||(q)
||T ||(q)

)n

|[L]|
(
|W |
|W (L)|

)n−1

ν(L)∑
ρ

(
dim(ρ̃)

||ρ||(q)

)n

where the first sum is over all endoscopy groups L of G containing T and the second sum is over all

principal unipotent characters of L(Fq). In view of §3.3, we have

||L||(q)
||T ||(q)

= q|Φ(L)+|PW (L)(q)

which equals |W (L)| when evaluated at q = 1. We also have ||ρ||(1) = dim(ρ̃) [GM20, p. 231] so

∑ρ(
dim(ρ̃)
||ρ||(q) )

n evaluated at q = 1 equals | Irr(W (L))|. Therefore

||X||(1) = ∑
[L]
|W (L)|n|[L]|

(
|W |
|W (L)|

)n−1

ν(L) | Irr(W (L))|.
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Theorem 66. Suppose C is generic. If g = 0 and n≥ 3 then

χ(X) =
1

(2r)!
d2r

dq2r

∣∣∣∣
q=1

ξ (q),

where 2r := 2dim(T )−2dim(Z) is twice the semisimple rank of G, and

ξ (q) := q|Φ(G)+|(n−2)
∑
L

ν(L)
(
|W |
|W (L)|

)n−1

∑
ρ

dim(ρ̃)n
(

PW (L)(q)
||ρ||(q)

)n−2

.1

In the definition of ξ (q), the first sum is over all endoscopy groups L of G containing T , and the

second sum is over all principal unipotent characters of L(Fq).

Proof. Suppose g = 0 and n≥ 3. Expanding the sum over τ and rearranging yields

||X||(q)(q−1)2r = ξ (q).

Differentiating 2r times and evaluating at q = 1 yields the Euler characteristic.

Some examples of χ(X) are provided in §A.7 and §A.8. It would be interesting to understand

the function ξ (q) as it governs the Euler characteristic of character varieties associated to punctured

spheres. We do not know any interpretation of this function.

7.7 Palindromicity

In this section, we prove Theorem 11 which says ||X||(q) is palindromic. Before doing so, we must

relate the types of χ and its Alvis–Curtis dual DG(χ):

Proposition 67. Suppose χ ∈RG
T θ has type τ = [L,ρ] and ρ is matched with φ ∈ Irr(W (L)) according

to Proposition 26. Then DG(χ) has type [L,DL(ρ)] where DL(ρ) is matched with φ⊗sgn∈ Irr(W (L)).

Hence, there is an involution

DG : T(G)→ T(G), [L,ρ] 7→ [L,DL(ρ)].

Proof. This is a consequence of Proposition 27. In particular, if χ is a summand in RG
T θ then DG(χ)

is too. Therefore, if χ has type [L,ρ] then DG(χ) has type [L,ρ ′] where the unipotent character ρ ′.

Specifically, if ρ is matched with φ according to Proposition 26 then ρ ′ is matched with φ⊗sgn. This

is an involution since sgn⊗ sgn = triv.

We are now ready to prove Theorem 11, restated here:

Theorem 68. If C is generic then ||X|| is a palindromic polynomial; i.e.,

||X||(q) = qdim(X)||X||(1/q).

1All derivatives of ξ (q) exist at q = 1 because it is a rational function defined at q = 1.
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Proof. We have dim(X) = (2g−2+n)dim(G)−2dim(Z)+n rank(G) so we just need to understand

||X||(1/q). Using formulas from §3.3, the following identities are straightforward:

||Z||(1/q) = (−1)dim(Z) q−dim(Z) ||Z||(q),

||T ||(1/q) = (−1)dim(T ) q−dim(T ) ||T ||(q),

||L||(1/q) = (−1)dim(T ) q−dim(T )−3|Φ(L)+| ||L||(q).

Next, by Proposition 27 and Proposition 67, if τ = [L,ρ] is a G-type then DG(τ) = [L,DL(ρ)] and

||τ||(1/q) = (−1)dim(T ) q−dim(T )−|Φ(G)| ||DG(τ)||(q).

Lastly, recall from Corollary 55 the formula

Sτ(q) = |Z(Fq)| dim(ρ̃)n |[L]|
(
|W |
|W (L)|

)n−1

ν(L).

Then SDG(τ)(q) = Sτ(q) since dim(ρ̃⊗ sgn) = dim(ρ̃). Therefore

Sτ(1/q) = (−1)dim(Z) q−dim(Z) SDG(τ)(q),

allowing us to compute

||X||(1/q) = q−dim(X) ||Z||(q)
||T ||(q)n ∑

τ∈T(G)

||DG(τ)||(q)2g−2+n SDG(τ)(q).

The result follows since DG : T(G)→ T(G) is an involution and therefore a bijection.

7.8 Consistency checks

In this section, we prove ||X||(q) = 0 when (g,n) = (0,1) or (0,2) using our formula for ||X||(q)
in Theorem 62. This follows from the following lemma. Suppose L is an endoscopy group of G

containing T and recall the sum

ν(L) := ∑
G⊇L′⊇L
L′ isolated

µ(L,L′)π
L′
0

over all isolated endoscopy groups L′ of G containing L.

Lemma 69. The sum

∑
G⊇L⊇T

ν(L)

over all endoscopy groups L of G containing T is equal to zero.

Proof. We rearrange

∑
G⊇L⊇T

ν(L) = ∑
G⊇L′⊇L
L′ isolated

π
L′
0 ∑

T⊆L⊆L′
µ(L,L′).
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But the sum

∑
T⊆L⊆L′

µ(L,L′)

over all endoscopy groups L of G containing T and contained in L′ is always zero. This is because

sums of the form ∑x∈P
x≤m

µ(x,m) where m is the maximal element of a finite poset P are always zero.

In our case, P is the poset of all endoscopy groups of G containing T and contained in L′.

Proposition 70. If (g,n) = (0,1) or (0,2) then ||X||(q) = 0.

Proof. If (g,n) = (0,1) then

||X||(q) = ||Z||(q)
||T ||(q) ∑

τ∈T(G)

Sτ(q)
||τ||(q)

.

Expanding the sum over τ gives

||X||(q) = ||Z||(q)2

||T ||(q)q|Φ(G)+|∑
L

q|Φ(L)+|ν(L)
||L||(q) ∑

ρ

dim(ρ̃)||ρ||(q),

where the first sum is over all endoscopy groups L of G containing T , and the second sum is over

principal unipotent characters ρ of L(Fq). By Proposition 26, the expression ∑ρ dim(ρ̃)||ρ||(q) is

equal to dim(RL
T 1) which equals

PW (L)(q) =
||L||(q)

q|Φ(L)+|||T ||(q)
.

Therefore

||X||(q) = ||Z||(q)2

||T ||(q)2q|Φ(G)+|∑
L

ν(L) = 0

by Lemma 69. The case (g,n) = (0,2) is handled the same way but the expression ∑ρ dim(ρ̃)||ρ||(q)
is replaced with ∑ρ dim(ρ̃)2 which equals |W (L)| since it is the sum of the squared dimensions of the

irreducible characters of a finite group [EGH+11, Theorem 4.1.1].
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Appendix A

Examples

In this appendix, we give several examples of counting polynomials and Euler characteristics of

character varieties using our main theorems from §2 and §7.

We state some notation used in the following tables. The ith cyclotomic polynomial is denoted

Φi; in particular

Φ1 = q−1, Φ2 = q+1, Φ3 = q2 +q+1, Φ4 = q2 +1 and Φ6 = q2−q+1.

The copies of A1 with longer and shorter roots are denoted A1 and A′1, respectively.

The unipotent characters in type Ar−1 are labelled by partitions; in particular, r1 is the trivial

character and 1r is the Steinberg character. The unipotent characters in type B2 are labelled using

Lusztig’s symbols [GM20, §4.4]; in particular,
(2) is the trivial character and

(0 1 2
1 2

)
is the Steinberg

character. The unipotent characters in type G2 are in the notation of [Car93]; in particular, φ1,0 is the

trivial character and φ1,6 is the Steinberg character.
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A.1 ||X|| when G = GL2

The following table contains the data required to compute ||X||(q) using Theorem 62:

τ = [L,ρ] |Φ(L)+| |L(Fq)| ρ(1) ρ̃(1) |W (L)| |[L]| πL
0 ν(L) ||τ||(q) Sτ(q)

[GL2,21] 1 qΦ2
1Φ2 1 1 2 1 1 1 qΦ2

1Φ2 Φ1

[GL2,12] 1 qΦ2
1Φ2 q 1 2 1 1 1 Φ2

1Φ2 Φ1

[T, triv] 0 Φ2
1 1 1 1 1 −1 qΦ2

1 −2n−1Φ1

Table A.1: The three GL2-types.

From the table, we have

||X||(q) = 1
Φ

2n−2
1

[
Φ1(qΦ

2
1Φ2)

2g−2+n︸ ︷︷ ︸
[GL2,21]

+Φ1(Φ
2
1Φ2)

2g−2+n︸ ︷︷ ︸
[GL2,12]

+−2n−1
Φ1(qΦ

2
1)

2g−2+n︸ ︷︷ ︸
[T,11]

]

= q2g−2+n
Φ

4g−3
1 Φ

2g−2+n
2︸ ︷︷ ︸

[GL2,21]

+Φ
4g−3
1 Φ

2g−2+n
2︸ ︷︷ ︸

[GL2,12]

+−2n−1q2g−2+n
Φ

4g−3
1︸ ︷︷ ︸

[T,11]

.
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A.2 ||X|| when G = GL3

The following table contains the data required to compute ||X||(q) using Theorem 62:

τ = [L,ρ] |Φ(L)+| |L(Fq)| ρ(1) ρ̃(1) |W (L)| |[L]| πL
0 ν(L) ||τ||(q) Sτ(q)

[GL3,31] 3 q3Φ3
1Φ2Φ3 1 1 6 1 1 1 q3Φ3

1Φ2Φ3 Φ1

[GL3,2111] 3 q3Φ3
1Φ2Φ3 qΦ2 2 6 1 1 1 q2Φ3

1Φ3 2nΦ1

[GL3,13] 3 q3Φ3
1Φ2Φ3 q3 1 6 1 1 1 Φ3

1Φ2Φ3 Φ1

[A1,21] 1 qΦ3
1Φ2 1 1 2 3 −1 q3Φ3

1Φ2 −3nΦ1

[A1,12] 1 qΦ3
1Φ2 q 1 2 3 −1 q2Φ3

1Φ2 −3nΦ1

[T, triv] 0 Φ3
1 1 1 1 1 2 q3Φ3

1
1
36nΦ1

Table A.2: The six GL3-types.

From the table, we have

||X||(q) = 1
Φ

3n−3
1

[
Φ1(q3

Φ
3
1Φ2Φ3)

2g−2+n︸ ︷︷ ︸
[GL3,31]

+2n
Φ1(q2

Φ
3
1Φ3)

2g−2+n︸ ︷︷ ︸
[GL3,2211]

+Φ1(Φ
3
1Φ2Φ3)

2g−2+n︸ ︷︷ ︸
[GL3,13]

+−3n
Φ1(q3

Φ
3
1Φ2)

2g−2+n︸ ︷︷ ︸
[A1,21]

+−3n
Φ1(q2

Φ
3
1Φ2)

2g−2+n︸ ︷︷ ︸
[A1,12]

+
1
3

6n
Φ1(q3

Φ
3
1)

2g−2+n︸ ︷︷ ︸
[T,triv]

]

= q6g−6+3n
Φ

6g−3
1 Φ

2g−2+n
2 Φ

2g−2+n
3︸ ︷︷ ︸

[GL3,31]

+2nq4g−4+2n
Φ

6g−3
1 Φ

2g−2+n
3︸ ︷︷ ︸

[GL3,2211]

+Φ
6g−3
1 Φ

2g−2+n
2 Φ

2g−2+n
3︸ ︷︷ ︸

[GL3,13]

+−3nq6g−6+3n
Φ

6g−3
1 Φ

2g−2+n
2︸ ︷︷ ︸

[A1,21]

+−3nq4g−4+2n
Φ

6g−3
1 Φ

2g−2+n
2︸ ︷︷ ︸

[A1,12]

+
1
3

6nq6g−6+3n
Φ

6g−3
1︸ ︷︷ ︸

[T,triv]

.
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A.3 ||X|| when G = PGL2

The following table contains the data required to compute ||X||(q) using Theorem 62:

τ = [L,ρ] |Φ(L)+| |L(Fq)| ρ(1) ρ̃(1) |W (L)| |[L]| πL
0 ν(L) ||τ||(q) Sτ(q)

[PGL2,21] 1 qΦ1Φ2 1 1 2 1 2 2 qΦ1Φ2 2

[PGL2,12] 1 qΦ1Φ2 q 1 2 1 2 2 Φ1Φ2 2

[T, triv] 0 Φ1 1 1 1 1 1 −2 qΦ1 −2n

Table A.3: The three PGL2-types.

From the table, we have

||X||(q) = 1
Φn

1

[
2(qΦ1Φ2)

2g−2+n︸ ︷︷ ︸
[PGL2,21]

+2(Φ1Φ2)
2g−2+n︸ ︷︷ ︸

[PGL2,12]

+−2n(qΦ1)
2g−2+n︸ ︷︷ ︸

[T,11]

]

= 2q2g−2+n
Φ

2g−2
1 Φ

2g−2+n
2︸ ︷︷ ︸

[PGL2,21]

+2Φ
2g−2
1 Φ

2g−2+n
2︸ ︷︷ ︸

[PGL2,12]

+−2nq2g−2+n
Φ

2g−2
1︸ ︷︷ ︸

[T,11]

.
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A.4 ||X|| when G = PGL3

The following table contains the data required to compute ||X||(q) using Theorem 62:

τ = [L,ρ] |Φ(L)+| |L(Fq)| ρ(1) ρ̃(1) |W (L)| |[L]| πL
0 ν(L) ||τ||(q) Sτ(q)

[PGL3,31] 3 q3Φ2
1Φ2Φ3 1 1 6 1 3 3 q3Φ2

1Φ2Φ3 3

[PGL3,2111] 3 q3Φ2
1Φ2Φ3 qΦ2 2 6 1 3 3 q2Φ2

1Φ3 3 ·2n

[PGL3,13] 3 q3Φ2
1Φ2Φ3 q3 1 6 1 3 3 Φ2

1Φ2Φ3 3

[A1,21] 1 qΦ2
1Φ2 1 1 2 3 −3 q3Φ2

1Φ2 −3n+1

[A1,12] 1 qΦ2
1Φ2 q 1 2 3 −3 q2Φ2

1Φ2 −3n+1

[T, triv] 0 Φ2
1 1 1 1 1 6 q3Φ2

1 6n

Table A.4: The six PGL3-types.

From the table, we have

||X||(q) = 1
Φ2n

1

[
3(q3

Φ
2
1Φ2Φ3)

2g−2+n︸ ︷︷ ︸
[PGL3,31]

+3 ·2n(q2
Φ

2
1Φ3)

2g−2+n︸ ︷︷ ︸
[PGL3,2211]

+3(Φ2
1Φ2Φ3)

2g−2+n︸ ︷︷ ︸
[PGL3,13]

+−3n+1(q3
Φ

2
1Φ2)

2g−2+n︸ ︷︷ ︸
[A1,21]

+−3n+1(q2
Φ

2
1Φ2)

2g−2+n︸ ︷︷ ︸
[A1,12]

+6n(q3
Φ

2
1)

2g−2+n︸ ︷︷ ︸
[T,triv]

]

= 3q6g−6+3n
Φ

4g−4
1 Φ

2g−2+n
2 Φ

2g−2+n
3︸ ︷︷ ︸

[PGL3,31]

+3 ·2nq4g−4+2n
Φ

4g−4
1 Φ

2g−2+n
3︸ ︷︷ ︸

[PGL3,2211]

+3Φ
4g−4
1 Φ

2g−2+n
2 Φ

2g−2+n
3︸ ︷︷ ︸

[PGL3,13]

+−3n+1q6g−6+3n
Φ

4g−4
1 Φ

2g−2+n
2︸ ︷︷ ︸

[A1,21]

+−3n+1q4g−4+2n
Φ

4g−4
1 Φ

2g−2+n
2︸ ︷︷ ︸

[A1,12]

+6nq6g−6+3n
Φ

4g−4
1︸ ︷︷ ︸

[T,triv]

.
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A.5 ||X|| when G = SO5

The following table contains the data required to compute ||X||(q) using Theorem 62:

τ = [L,ρ] |Φ(L)+| |L(Fq)| ρ(1) ρ̃(1) |W (L)| |[L]| πL
0 ν(L) ||τ||(q) Sτ(q)

[SO5,
(2)] 4 q4Φ2

1Φ2
2Φ4 1 1 8 1 2 2 q4Φ2

1Φ2
2Φ4 2

[SO5,
(0 1

2

)
] 4 q4Φ2

1Φ2
2Φ4

1
2qΦ4 1 8 1 2 2 2q3Φ2

1Φ2
2 2

[SO5,
(1 2

0

)
] 4 q4Φ2

1Φ2
2Φ4

1
2qΦ4 1 8 1 2 2 2q3Φ2

1Φ2
2 2

[SO5,
(0 2

1

)
] 4 q4Φ2

1Φ2
2Φ4

1
2qΦ2

2 2 8 1 2 2 2q3Φ2
1Φ4 2n+1

[SO5,
(0 1 2

1 2

)
] 4 q4Φ2

1Φ2
2Φ4 q4 1 8 1 2 2 Φ2

1Φ2
2Φ4 2

[A1×A1,21⊗21] 2 q2Φ2
1Φ2

2 1 1 4 1 4 2 q4Φ2
1Φ2

2 2n

[A1×A1,21⊗12] 2 q2Φ2
1Φ2

2 q 1 4 1 4 2 q3Φ2
1Φ2

2 2n

[A1×A1,12⊗21] 2 q2Φ2
1Φ2

2 q 1 4 1 4 2 q3Φ2
1Φ2

2 2n

[A1×A1,12⊗12] 2 q2Φ2
1Φ2

2 q2 1 4 1 4 2 q2Φ2
1Φ2

2 2n

[A1,21] 1 qΦ2
1Φ2 1 1 2 2 −4 q4Φ2

1Φ2 −2 ·4n

[A1,12] 1 qΦ2
1Φ2 q 1 2 2 −4 q3Φ2

1Φ2 −2 ·4n

[A′1,2
1] 1 qΦ2

1Φ2 1 1 2 2 −2 q4Φ2
1Φ2 −4n

[A′1,1
2] 1 qΦ2

1Φ2 q 1 2 2 −2 q3Φ2
1Φ2 −4n

[T, triv] 0 Φ2
1 1 1 1 1 8 q4Φ2

1 8n

Table A.5: The fourteen SO5-types.
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A.6 ||X|| when G = G2

The following table contains the data required to compute ||X||(q) using Theorem 62:

τ = [L,ρ] |Φ(L)+| |L(Fq)| ρ(1) ρ̃(1) |W (L)| |[L]| πL
0 ν(L) ||τ||(q) Sτ(q)

[G2,φ1,0] 6 q6Φ2
1Φ2

2Φ3Φ6 1 1 12 1 1 1 q6Φ2
1Φ2

2Φ3Φ6 1

[G2,φ
′
1,3] 6 q6Φ2

1Φ2
2Φ3Φ6

1
3qΦ3Φ6 1 12 1 1 1 3q5Φ2

1Φ2
2 1

[G2,φ
′′
1,3] 6 q6Φ2

1Φ2
2Φ3Φ6

1
3qΦ3Φ6 1 12 1 1 1 3q5Φ2

1Φ2
2 1

[G2,φ2,1] 6 q6Φ2
1Φ2

2Φ3Φ6
1
6qΦ2

2Φ3 2 12 1 1 1 6q5Φ2
1Φ6 2n

[G2,φ2,2] 6 q6Φ2
1Φ2

2Φ3Φ6
1
2qΦ2

2Φ6 2 12 1 1 1 2q5Φ2
1Φ3 2n

[G2,φ1,6] 6 q6Φ2
1Φ2

2Φ3Φ6 q6 1 12 1 1 1 Φ2
1Φ2

2Φ3Φ6 1

[A2,31] 3 q3Φ2
1Φ2Φ3 1 1 6 1 3 2 q6Φ2

1Φ2Φ3 2n

[A2,2111] 3 q3Φ2
1Φ2Φ3 qΦ2 2 6 1 3 2 q5Φ2

1Φ3 4n

[A2,13] 3 q3Φ2
1Φ2Φ3 q3 1 6 1 3 2 q3Φ2

1Φ2Φ3 2n

[A1×A′1,2
1⊗21] 2 q2Φ2

1Φ2
2 1 1 4 3 2 1 q6Φ2

1Φ2
2 3n

[A1×A′1,2
1⊗12] 2 q2Φ2

1Φ2
2 q 1 4 3 2 1 q5Φ2

1Φ2
2 3n

[A1×A′1,1
2⊗21] 2 q2Φ2

1Φ2
2 q 1 4 3 2 1 q5Φ2

1Φ2
2 3n

[A1×A′1,1
2⊗12] 2 q2Φ2

1Φ2
2 q2 1 4 3 2 1 q4Φ2

1Φ2
2 3n

[A1,21] 1 qΦ2
1Φ2 1 1 2 3 −4 q6Φ2

1Φ2 −2 ·6n

[A1,12] 1 qΦ2
1Φ2 q 1 2 3 −4 q5Φ2

1Φ2 −2 ·6n

[A′1,2
1] 1 qΦ2

1Φ2 1 1 2 3 −2 q6Φ2
1Φ2 −6n

[A′1,1
2] 1 qΦ2

1Φ2 q 1 2 3 −2 q5Φ2
1Φ2 −6n

[T, triv] 0 Φ2
1 1 1 1 1 12 q6Φ2

1 12n

Table A.6: The eighteen G2-types.
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A.7 χ(X) when g = 1 and dim(Z) = 0

In this section, we compute the Euler characteristic of X when g = 1 and dim(Z) = 0. By Theorem

65, the Euler characteristic is given by

χ(X) = |W |n−1
∑
L
|W (L)| | Irr(W (L))|ν(L),

where the sum is over all endoscopy groups L of G containing T . We can simplify

χ(X) = |W |n−1
∑
[L]
|[L]| |W (L)| | Irr(W (L))|ν(L),

where the sum is now over all W -orbits of endoscopy groups of G containing T .

A.7.1 G = SO5

The endoscopy groups of G containing T are SO5, A1×A1, A1, A′1 and T (up to the W -action).

[L] |[L]| W (L) |W (L)| | Irr(W (L))| ν(L)

[SO5] 1 D8 8 5 2

[A1×A1] 1 S2×S2 4 4 2

[A1] 2 S2 2 2 −4

[A′1] 2 S2 2 2 −2

[T ] 1 1 1 1 8

Table A.7: Calculations for χ(X) when G = SO5 and g = 1.

Using the formula, we have χ(X) = 72×8n−1 = 9×23n.

A.7.2 G = G2

The endoscopy groups of G containing T are G2, A2, A1×A1, A1, A′1 and T (up to the W -action).

[L] |[L]| W (L) |W (L)| | Irr(W (L))| ν(L)

[G2] 1 D12 12 6 1

[A2] 1 S3 6 3 2

[A1×A′1] 2 S2×S2 4 4 1

[A1] 2 S2 2 2 −4

[A′1] 2 S2 2 2 −2

[T ] 1 1 1 1 12

Table A.8: Calculations for χ(X) when G = G2 and g = 1.

Using the formula, we have χ(X) = 104×12n−1 = 8×13×12n−1.
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A.8 χ(X) when g = 0 and n≥ 3

In this section, we provide examples of the Euler characteristic of X when g = 0 and n≥ 3. The Euler

characteristics are summarised in the following table:

G χ(X)

GL2 2n−4(n−1)(n−2)

GL3 2n−53n−3(n−1)(n−2)(9n2−27n+16)

GL4 23n−93n−4(n−1)(n−2)(108n4−648n3 +1350n2−1129n+324)

SO5 23n−8(n−1)(n−2)(11n2−33n+19)

G2 22n−73n−3(n−1)(n−2)(207n2−621n+350)

Table A.9: Calculations for χ(X) when g = 0 and n≥ 3.

By Theorem 66, the Euler characteristic is given by

χ(X) =
1

2r!
d2r

dq2r

∣∣∣∣
q=1

ξ (q),

where 2r := 2dim(T )−2dim(Z) is twice the semisimple rank of G and

ξ (q) = q|Φ(G)+|(n−2)
∑
[L]

ν(L) |[L]|
(
|W |
|W (L)|

)n−1

rL(q),

where the sum is over all W -orbits of endoscopy groups of G containing T and

rL(q) := ∑
ρ

dim(ρ̃)n
(

PW (L)(q)
||ρ||(q)

)n−2

,

where the sum is over all principal unipotent characters of L(Fq). Calculations of rL(q) are below:

L rL(q)

T 1

A1 Φ
n−2
2 +(Φ2

q )n−2

A1×A1 rA1(q)
2

A2 (Φ2Φ3)
n−2 +(Φ2Φ3

q3 )n−2 +2n(Φ3
q )n−2

B2 (Φ2
2Φ4)

n−2 +(
Φ2

2Φ4
q4 )n−2 +2(2Φ2

2
q )n−2 +2n(2Φ4

q )n−2

G2 (Φ2
2Φ3Φ6)

n−2 +(
Φ2

2Φ3Φ6
q6 )n−2 +2(3Φ2

2
q )n−2 +2n(6Φ6

q )n−2 +2n(2Φ3
q )n−2

A3 (Φ2
2Φ3Φ4)

n−2 +(
Φ2

2Φ3Φ4
q6 )n−2 +2n(

Φ2
2Φ3
q2 )n−2 +3n(

Φ2
2Φ4
q )n−2 +3n(

Φ2
2Φ4
q3 )n−2

Table A.10: Calculations for rL(q). The ith cyclotomic polynomial is denoted Φi; in particular,
Φ2 = q+1, Φ3 = q2 +q+1, Φ4 = q2 +1 and Φ6 = q2−q+1.
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A.8.1 G = GL2

In this case, ξ (q) equals

q(n−2)
[

rA1(q)−2n−1rT (q)
]
.

Differentiating 2r = 2dim(T )−2dim(Z) = 2 times, evaluating at q = 1 and dividing by (2r)! gives

χ(X) = 2n−4(n−1)(n−2).

A.8.2 G = GL3

In this case, ξ (q) equals

q3(n−2)
[

rA2(q)−3nrA1(q)+2×6n−1rT (q)
]
.

Differentiating 2r = 2dim(T )−2dim(Z) = 4 times, evaluating at q = 1 and dividing by (2r)! gives

χ(X) = 2n−53n−3(n−1)(n−2)(9n2−27n+16).

This agrees with [HLRV11, (1.5.8)].

A.8.3 G = GL4

In this case, ξ (q) equals

q6(n−2)
[

rA3(q)−4nrA2(q)−3×6n−1rA1×A1(q)+12nrA1(q)−6×24n−1rT (q)
]
.

Differentiating 2r = 2dim(T )−2dim(Z) = 6 times, evaluating at q = 1 and dividing by (2r)! gives

χ(X) = 23n−93n−4(n−1)(n−2)(108n4−648n3 +1350n2−1129n+324).

A.8.4 G = SO5

In this case, ξ (q) equals

q4(n−2)
[

2rB2(q)+2nrA1×A1(q)−4n+1rA1(q)−4nrA1(q)+8nrT (q)
]
.

Differentiating 2r = 2dim(T )−2dim(Z) = 4 times, evaluating at q = 1 and dividing by (2r)! gives

χ(X) = 23n−8(n−1)(n−2)(11n2−33n+19).

A.8.5 G = G2

In this case, ξ (q) equals

q6(n−2)
[

rG2(q)+2nrA2(q)+3nrA1×A1(q)−2×6nrA1(q)−6nrA1(q)+12nrT (q)
]
.

Differentiating 2r = 2dim(T )−2dim(Z) = 4 times, evaluating at q = 1 and dividing by (2r)! gives

χ(X) = 22n−73n−3(n−1)(n−2)(207n2−621n+350).



Appendix B

Counting polynomials in Julia

In this appendix, we explain how to compute ||X||(q) using the CHEVIE package in Julia. In par-

ticular, we calculate the table given in §A.6 which directly yields the counting polynomial of the

associated G2-character variety.

The ideas found in this thesis have been developed into a package for Julia found at

https://github.com/baileywhitbread/CharacterVarieties.jl.
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B.1 Calculating pseudo-Levi subgroups

Once the CHEVIE package is loaded in Julia, we can calculate some familiar objects from representation theory:

1 using Chevie;

G = coxgroup (:G,2);

3 uc = UnipotentCharacters(G);

The command UnipotentCharacters(G) returns a dictionary containing, among other things, the unipotent characters of G(Fq).

Rather than calculate the endoscopy groups of G containing T , we work in the dual Ǧ and calculate the pseudo-Levi subgroups of Ǧ containing Ť . This

is because we have access to a convenient function sscentralizer reps which returns a list of representatives of centralisers of semisimple elements.

This is used together with the functions reflection subgroup and orbits which allow us to calculate all desired pseudo-Levi subgroups:

1 G_dual = rootdatum(simplecoroots(G),simpleroots(G));

pseudo_levi_orbit_reps = reflection_subgroup .(Ref(G_dual),sscentralizer_reps(G_dual ));

3 pseudo_levi_orbits = orbits(G_dual ,pseudo_levi_orbit_reps );

We collect these pseudo-Levi subgroups into a single list and create another list of the isolated-pseudo Levi subgroups:

1 pseudo_levis = [];

isolated_pseudo_levis = [];

3 for pseudo_levi_orbit in pseudo_levi_orbits

for pseudo_levi in pseudo_levi_orbit

5 append !( pseudo_levis ,[ pseudo_levi ])

if length(gens(pseudo_levi )) == length(gens(G)) # Isolated iff no. of simples equal

7 append !( isolated_pseudo_levis ,[ pseudo_levi ])

end

9 end

end
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B.2 Calculating ν(L)

We also need to calculate the function ν(L) for endoscopy groups of G containing T . Recall from Theorem 62 the definition

ν(L) := ∑
L′

µ(L,L′)π
L′
0 ,

where the sum is over all isolated endoscopy groups L′ of G containing L, µ is the Möbius function on the poset of endoscopy groups of G containing T ,

πL′
0 = |π0(ŤW (L′))| is the number of components of ŤW (L′). Written in terms of pseudo-Levi subgroups L of Ǧ containing Ť , we instead have

ν(L) = ∑
L′

µ(L,L′)π
L′
0 ,

where the sum is over all isolated pseudo-Levi subgroups L′ of Ǧ containing L, µ is the Möbius function on the poset of pseudo-Levi subgroups of Ǧ

containing Ť , πL′
0 = |π0(TW (L′))| is the number of components of TW (L′). In view of this formula, we define a few helper functions.

First, we need a way of checking whether pseudo-Levi subgroups contain each other, so that we can implement the Möbius function. Given a pseudo-

Levi subgroup L the function inclusion returns a list of its roots. For instance, inclusion(G) returns [1,2,...,12], representing the twelve roots of

G2. We pair this with Julia’s built-in function issubset:

function subset(L,M)

2 return issubset(inclusion(L),inclusion(M))

end

4

function equal(L,M)

6 return inclusion(L) == inclusion(M)

end

Next, we need to compute πL
0 . Luckily, the function algebraic center(L) returns a dictionary of information about Z(L) and the key .AZ returns

the component group of Z(L). Thus, we define:

1 function pi0(L)

return length(algebraic_center(L).AZ)

3 end



64
A

PPE
N

D
IX

B
.

C
O

U
N

T
IN

G
PO

LY
N

O
M

IA
L

S
IN

JU
L

IA

We are now ready to implement the Möbius function:

1 function mob(A,B,poset)

if equal(A,B)

3 return 1

elseif subset(A,B)

5 mob_value = 0

for element in poset

7 if subset(A,element) && subset(element ,B) && !equal(element ,B)

mob_value += mob(A,element ,poset)

9 end

end

11 return (-1)* mob_value

else

13 error("First argument is not a subset of the second argument")

end

15 end

Finally, we can implement the ν(L) function:

1 function nu(L)

nu_value = 0

3 for isolated_pseudo_levi in isolated_pseudo_levis

if subset(L,isolated_pseudo_levi)

5 nu_value += mob(L,isolated_pseudo_levi ,pseudo_levis )*pi0(isolated_pseudo_levi)

end

7 end

return nu_value

9 end
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B.3 Calculating G-types and their associated data

We calculate the table given in §A.6 using the array type data = Array{Any}(nothing,0,8):

1 for pseudo_levi in pseudo_levi_orbit_reps

pseudo_levi_order_poly = generic_order(pseudo_levi ,Pol(:q));

3 pseudo_levi_positive_root_size = Int(length(roots(pseudo_levi ))/2);

pseudo_levi_orbit_size = length(orbits(G_dual ,pseudo_levi ));

5 pseudo_levi_weyl_size = length(pseudo_levi );

pseudo_levi_nu = nu(pseudo_levi );

7 pseudo_levi_uc = UnipotentCharacters(pseudo_levi );

pseudo_levi_uc_names = charnames(pseudo_levi_uc ,limit=true);

9 pseudo_levi_uc_degree_polys = degrees(pseudo_levi_uc );

for i in 1: length(pseudo_levi_uc)

11 if Int(pseudo_levi_uc_degree_polys[i](1)) != 0 # Check unipotent char. is principal

type_row = Array{Any}(nothing ,1 ,0);

13 global type_row = hcat(type_row ,[( pseudo_levi ,pseudo_levi_uc_names[i])]);

global type_row = hcat(type_row ,[ pseudo_levi_positive_root_size ]);

15 global type_row = hcat(type_row ,[ pseudo_levi_uc_degree_polys[i]]);

global type_row = hcat(type_row ,[ pseudo_levi_order_poly ]);

17 global type_row = hcat(type_row ,[Int(pseudo_levi_uc_degree_polys[i](1))]);

global type_row = hcat(type_row ,[ pseudo_levi_weyl_size ]);

19 global type_row = hcat(type_row ,[ pseudo_levi_orbit_size ]);

global type_row = hcat(type_row ,[ pseudo_levi_nu ]);

21 global type_data = vcat(type_data ,type_row );

end

23 end

end



Erratum

The proof of Proposition 41 contains an error and the result was used to prove Corollary 43. A correct

proof of Corollary 43 appears in [KNWG24, Theorem 12].

The error in Proposition 41 is the centraliser subgroup CG(h) may not be a pseudo-Levi subgroup.

This is because we require pseudo-Levi subgroups to be connected, and centralisers of semisimple

elements of G need not be connected.

The proof of Proposition 41 still goes through if the centre of the dual group Ǧ is connected. For

instance, this happens if G is semisimple of adjoint type G2, F4 or E8 (see [GM20, Example 1.5.3]

and [GM20, Table 1.2]).
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