The University Of Queensland

A U S TRALIA

Arithmetic geometry of character varieties

Bailey Whitbread

BMath (Hons)

A thesis submitted for the degree of Masters of Philosophy at The University of Queensland in 2024
School of Mathematics and Physics

Abstract

We study character varieties associated to punctured orientable surfaces and connected split reductive groups. To study these varieties, we count points over finite fields and find the number of points in a polynomial, called the counting polynomial. We compute features of the counting polynomial such as its degree, its leading coefficient and its value at 1, yielding topological information such as the dimension, number of components and Euler characteristic of character varieties, respectively. We prove the counting polynomial is palindromic which suggests a curious Poincaré duality, a curious hard Lefschetz and a $P=W$ conjecture for character varieties. We also implement our formula for the counting polynomial using the Chevie system in the Julia programming language.

There are two main ideas appearing in this thesis: representation-theoretic data called G-types elucidates the point-count of character varieties, and choosing the regular semisimple conjugacy classes 'generically' simplifies the point-count.

Declaration by author

This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis.

Publications included in this thesis

No publications included in this thesis.

Submitted manuscripts included in this thesis

No submitted publications.

Other publications during candidature

1. KNWG24] M. Kamgarpour, G. Nam, B. Whitbread, and S. Giannini, Counting points on generic character varieties of reductive groups (2024). In preparation.

Contributions by others to the thesis

All new results were obtained in collaboration with Masoud Kamgarpour, GyeongHyeon Nam, and Stefano Giannini, who, along with Ole Warnaar, have given feedback on versions of this thesis.

Statement of parts of the thesis submitted to qualify for the award of another degree

No works submitted towards another degree have been included in this thesis.

Research involving human or animal subjects

No animal or human subjects were involved in this research.

Acknowledgments

I would like to deeply thank Assoc. Prof. Masoud Kamgarpour for being my advisor. I am exceptionally fortunate to have been gifted your time and advice, and I will always be grateful. I would also like to thank my co-advisor Prof. Ole Warnaar for the same reasons.

I want to thank the chairs of my review panels, Dr. Timothy Buttsworth and Dr. Yang Zhang, for sacrificing their time for me and for their advice. I give the same thanks to the panelists, Dr. Ramiro Lafuente, Dr. Sam Jeralds, Dr. Agnese Barbensi and Dr. Jieru Zhu.

I would like to thank the academics Prof. Emmanuel Letellier, Dr. Konstantin Jakob, and Prof. Jean Michel for taking the time to answer my questions. In particular, I also want to thank Prof. Arun Ram and Dr. Dougal Davis for taking the time to give me career advice. I am also grateful and give thanks to Dr. Dinakar Muthiah and Dr. Anna Puskás for giving me the opportunity to speak at The University of Glasgow and for their hospitality.

Lastly, I want to thank my friends Dr. GyeongHyeon Nam and Stefano Giannini.

Financial support

This research was supported by an Australian Government Research Training Program Scholarship.

Keywords

Representation theory, algebraic geometry, arithmetic geometry, Deligne-Lusztig theory.

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSCR code: 010101, Algebra and Number Theory, 50\%
ANZSCR code: 010102, Algebraic and Differential Geometry, 50\%

Fields of Research (FoR) Classification

FoR code: 0101, Pure Mathematics, 100\%

Contents

Contents vii
1 Introduction 1
1.1 Overview 1
1.2 Character varieties 3
1.3 Counting points 4
1.4 Literature 5
2 Main results 7
2.1 Assumptions and results 7
2.2 Further directions 10
3 Recollections on finite reductive groups 11
3.1 Pseudo-Levi subgroups and endoscopy groups 11
3.2 Lusztig's Jordan decomposition 15
3.3 Order polynomials and degree polynomials 16
3.4 Principal series characters 16
3.5 Alvis-Curtis duality of characters 18
4 The type of a $G\left(\mathbb{F}_{q}\right)$-character 19
4.1 G-types and the type map 19
4.2 Frobenius' formula with types 20
4.3 Green-types 21
4.4 Cambò-types 23
5 Generic conjugacy classes 24
5.1 Definition and examples 24
5.2 Conjugacy classes can be chosen generically 26
5.3 Stabilisers are finite étale 28
6 Formulas for the character sum $S_{\tau}(q)$ 29
6.1 A formula for $S_{\tau}(q)$: once-punctured case 29
6.2 A formula for $S_{\tau}(q)$: multi-punctured case 31
6.3 A formula for the auxiliary sum $\alpha_{L, S}(q)$ 31
6.4 A simple formula for $S_{\tau}(q)$: generic case 33
7 Proofs of main results 36
7.1 Counting functions for \mathfrak{X} 36
7.2 Dimension and components of \mathfrak{X} 38
$7.3 \mathfrak{X}$ and \mathbf{X} have the same point-count 39
7.4 Counting polynomials for \mathbf{X} 40
7.5 Dimension and components of \mathbf{X} 40
7.6 Euler characteristic 41
7.7 Palindromicity 42
7.8 Consistency checks 43
A Counting polynomials in Julia 45
A. 1 Calculating pseudo-Levi subgroups 46
A. 2 Calculating $v(L)$ 47
A. 3 Calculating G-types and their associated data 49
B Examples 50
B. $1\|\mathbf{X}\|$ when $G=\mathrm{GL}_{2}$ 50
B. $2\|\mathbf{X}\|$ when $G=\mathrm{GL}_{3}$ 51
B. $3\|\mathbf{X}\|$ when $G=\mathrm{SO}_{5}$ 52
B. $4\|\mathbf{X}\|$ when $G=G_{2}$ 53
B. $5 \quad \chi(\mathbf{X})$ when $g=1$ and $\operatorname{dim}(Z)=0$ 54
B.5.1 $G=\mathrm{SO}_{5}$ 54
B.5.2 $\quad G=G_{2}$ 54
B. $6 \chi(\mathbf{X})$ when $g=0$ and $n \geq 3$ 55
B.6.1 $G=\mathrm{GL}_{2}$ 56
B.6.2 $G=\mathrm{GL}_{3}$ 56
B.6.3 $G=\mathrm{GL}_{4}$ 56
B.6.4 $G=\mathrm{SO}_{5}$ 56
B.6.5 $G=G_{2}$ 56
Bibliography 57

Chapter 1

Introduction

1.1 Overview

This thesis lies at the intersection of two branches of mathematics: algebra and geometry. Specifically, it lies at the intersection between representation theory, algebraic geometry and arithmetic geometry. Algebraic and arithmetic geometry study spaces defined by polynomial equations, while representation theory is the study of algebraic objects through linearisation techniques. In this thesis, we study the aforementioned spaces using the toolboxes of representation theory, algebraic geometry and arithmetic geometry.

A basic object linking the two worlds of algebra and geometry is an (affine) algebraic group. Briefly, this is an affine variety G over a field k such that G is an abstract group and the associated multiplication and inversion maps are morphisms of varieties. When the field k equals \mathbb{C} or \mathbb{R}, we recover many important examples of complex and real Lie groups including $\mathrm{SL}_{2}(\mathbb{C}), \mathrm{SO}_{3}(\mathbb{R})$, and so on. Although there are many important common themes, the theory of algebraic groups and the theory of Lie groups are distinct because, for instance, not all Lie groups can be realised as an algebraic group over \mathbb{R} or \mathbb{C}.

A character variety, the main object in this thesis, is built using algebraic groups. Roughly, character varieties are spaces whose points are homomorphisms from the fundamental group of an orientable surface to a connected algebraic group G. These varieties are related to numerous topics in mathematics and physics, including the Langlands program, the Yang-Mills equations, gauge theory, Higgs bundles, the Hitchin system, CalabiYau manifolds, non-abelian Hodge theory, Hitchin's equations, the $P=W$ conjecture, and mirror symmetry Sim91, Sim92, HT03, DP12, Hau13, BPGPNT14, BP16, HMMS22, Hos23, MS24].

Figure 1.1: A visualisation of a character variety (CFLO16].

Character varieties are generally not well-understood, but significant progress has been made when G is the general linear group GL_{n}. This is thanks to the seminal work of Hausel, Letellier and Rodriguez-Villegas HRV08, HLRV11] and subsequent work [Let15, Mel18, Mel19, Mel20, Bal23, LRV23. In light of the Langlands program, which seeks to connect number theory, representation theory and algebraic geometry, we study character varieties associated to general algebraic groups.

We investigate character varieties by studying their cohomology, obtaining useful topological invariants such as dimension, Euler characteristic, and the number of irreducible components. We access these invariants through techniques of arithmetic geometry. Specifically, our work relies on the Weil conjectures, a jewel of 20th century mathematics. Their statements are complicated, but they teach us an important philosophy: cohomological information can be obtained by counting points over finite fields.

A formula first revealed by Frobenius links the number of points on the character variety over finite fields to the complex representation theory of the underlying finite group. This provides a clear strategy to analyse character varieties: use the representation theory of finite groups to evaluate Frobenius' formula and extract cohomological information from the resulting expression. This is the strategy employed in this thesis.

The finite groups appearing in this thesis are algebraic groups over \mathbb{F}_{q}, the finite field with order a prime power $q=p^{r}$. In this setting, we recover many important families of finite groups, such as $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and $\mathrm{SO}_{n}\left(\mathbb{F}_{q}\right)$. Such groups are called finite groups of Lie type, due to their connections to Lie groups, and are closely related to the classification of finite simple groups |Gal76, §12]. Since these groups are finite, their complex representation theory is well-behaved in the sense that it is sufficient to understand the finite list of so-called irreducible representations.

While analysing finite groups and their representations individually can yield insights, we need to understand the situation uniformly. Such an understanding has already been achieved, up to some conditions on G and p. Specifically, the representation theory of finite groups of Lie type is uniformly wellunderstood when G is connected and reductive (the latter meaning G contains no non-trivial closed connected normal unipotent subgroups) with connected centre and p is not too small. This is primarily due to the eponymous char-

Figure 1.2: Grothendieck's visualisation of reductive groups Mil17]. acters of Deligne and Lusztig (DL76].

The novelty of this thesis is our type-independent approach; i.e., we do not make assumptions about the type of the underlying root system of G and our proofs are not case-by-case in the type of G. When in such generality, we find fundamental objects arising in the Langlands program (such as Langlands dual groups, pseudo-Levi subgroups and endoscopy groups) play key roles in our analysis of character varieties; such phenomena does not arise when $G=\mathrm{GL}_{n}$. Our findings are to appear in an upcoming paper KNWG24.

The remainder of this introduction is as follows. In $\$ 1.2$, we define the three closely related spaces we study: the representation variety, the character variety, and the character stack. In $\$ 1.3$, we explain how we study these spaces. Namely, we define two notions which are fundamental to this thesis (polynomial count and rational count) and we explain how they are used to extract cohomological information. Equipped with this knowledge, we detail what is already known about character varieties in $\S 1.4$.

The remainder of this thesis is as follows. We begin by fixing terminology, presenting our new results, and stating some unexplored directions warranting further exploration in $\$ 2$ In $\$ 3$, we recall necessary and deep results from the representation theory of finite reductive groups. In $\$ 4$, we use this theory to define the notion of a G-type which are the lense through which we view Frobenius' formula and reduces the problem of evaluating Frobenius' formula to evaluating certain character sums. In \$5. we define and develop a key idea appearing in this thesis which is that of a generic choice of conjugacy classes. We perform some technical analysis of the aforementioned character sums in §6, allowing us to prove our main theorems in $\$ 7$.

The appendix of this thesis contains a demonstration of how to count points on character varieties using the Chevie system in the Julia programming language in $\$$ A and worked examples of counting points on character varieties using our new formulas in $\$ B$.

1.2 Character varieties

Suppose G is a connected reductive group over a finite field \mathbb{F}_{q} and let Σ be an orientable surface with genus $g \geq 0$ and $n \geq 1$ punctures, depicted as follows.

This surface has the fundamental group

$$
\pi_{1}(\Sigma) \simeq\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, y_{1}, \ldots, y_{n} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right] y_{1} \cdots y_{n}=1\right\rangle
$$

and therefore a group homomorphism $\pi_{1}(\Sigma) \rightarrow G$ is determined by the images of the generators, subject to the relation of the fundamental group. Thus, we have a bijection

$$
\operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) \simeq\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}, Y_{1}, \ldots, Y_{n}\right) \in G^{2 g+n} \mid\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right] Y_{1} \cdots Y_{n}=1\right\}
$$

Reductive groups carry the structure of a variety defined over \mathbb{F}_{q} which is inherited by this space of homomorphisms. We choose conjugacy classes $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$ in G. Each C_{i} is also a variety over \mathbb{F}_{q} because it arises as an orbit of G acting on G by conjugation [Spr98, §2.3], allowing us to define

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) & :=\left\{f \in \operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) \mid f\left(y_{i}\right) \in C_{i}\right\} \\
& \simeq\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}, Y_{1}, \ldots, Y_{n}\right) \in \operatorname{Hom}\left(\pi_{1}(\Sigma), G\right) \mid Y_{i} \in C_{i}\right\} \subseteq G^{2 g} \times \prod_{i=1}^{n} C_{i}
\end{aligned}
$$

We call $\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right)$ the representation variety associated to G, Σ and \mathcal{C}. Recall two representations $\pi_{1}(\Sigma) \rightarrow G$ are equivalent if they are conjugate by an element of G. Under the identification $\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) \subseteq G^{2 g+n}$, the representation variety admits an action of G by simultaneous conjugation in each entry. Thus, it is natural to consider the collection of orbits $\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) / G$. However, this does not necessarily inherit the algebro-geometric structure of G.

There are two ways of endowing the collection of orbits with an algebro-geometric structure:
(i) We consider the geometric-invariant-theory (GIT) quotient, denoted $\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) / / G$. Historically, this was the first solution to the orbit-space problem, due to Mumford Mum65]. Over algebraically closed fields, the points of the GIT quotient are in bijection with the closed orbits.
(ii) We consider the stack quotient, denoted $\left[\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) / G\right]$. Stacks are a higher algebraic object defined in the wake of Grothendieck, Mumford, Deligne and Artin, who resolved the orbit-space problem by keeping track of additional data which is forgotten by the GIT quotient. In a sense, the stack quotient is the 'correct' quotient, but its construction requires some work.

The GIT quotient $\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) / / G$ is called the character variety and has a close relationship to the problems from other areas stated earlier. In general, when the action of G is not free, it is not clear how to relate the point-counts of the character variety and representation variety. On the other hand, the stack quotient $\left[\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right) / G\right]$ is called the character stack, and it has essentially the same point-count as that of the representation variety. Since the centre Z of G acts trivially on the representation variety, the G-action on the representation variety is usually not well-behaved. However, by definition of the GIT quotient, we only need the G / Z-action to be well-behaved.

1.3 Counting points

Our strategy for analysing character varieties is to count their points over finite fields. We say a variety X defined over \mathbb{F}_{q} is polynomial count with counting polynomial $\|X\| \in \mathbb{Q}[t]$ if

$$
\left|X\left(\mathbb{F}_{q^{n}}\right)\right|=\|X\|\left(q^{n}\right) \text { for all } n \geq 1
$$

More generally, we say X is potentially polynomial count if it becomes polynomial count after passing to a finite extension of \mathbb{F}_{q}. We also allow ourselves to exclude finitely many primes, in which case we say X is (potentially) polynomial count away from those primes.

Fine cohomological information is encoded in counting polynomials (see [LRV23, §2.2] for details). From these polynomials, which we can extract topological information. For example,
(i) The dimension of X is the degree of $\|X\|$,
(ii) The Euler characteristic of X is given by $\|X\|(1)$, and
(iii) The number of irreducible components of X is the leading coefficient of $\|X\| \|^{1}$

[^0]Since the coefficients of counting polynomials encode cohomological information, it is worthwhile asking if a counting polynomial is palindromic, meaning its coefficients are the same when read backwards and forwards (after placing the terms in descending order of degree). If X is smooth, projective and polynomial count then Poincaré duality implies $\|X\|$ is palindromic. The character varieties in this project are affine but we find they have palindromic counting polynomials too. This suggests character varieties obey curious Poincaré duality, curious hard Lefschetz and the $P=W$ conjecture (which are statements about the mixed Hodge structure of the character variety) HRV08, HLRV11, Hau13.

The story above can be extended to a larger class of algebraic objects. We will need this extended story in order to analyse the character stack. We say an algebraic stack \mathfrak{X} of finite type over \mathbb{F}_{q} is rational count with counting function $\|\mathfrak{X}\| \in \mathbb{Q}(t)$ if

$$
\left|\mathfrak{X}\left(\mathbb{F}_{q^{n}}\right)\right|=\|\mathfrak{X}\|\left(q^{n}\right) \text { for all } n \geq 1
$$

and potentially rational count stacks are defined analogously. Clearly, if \mathfrak{X} is polynomial count then it is rational count, and the converse is true if \mathfrak{X} is a variety defined over \mathbb{F}_{q},LRV23, Lemma 2.8].

In general, counting points over finite fields is not an easy problem. However, in our setting, there is a formula due to Frobenius telling us how to point-count on the representation variety HLRV11, Proposition 3.1.4]. Assume the centraliser of each C_{i} in G is connected (we will soon specialise G and C_{i} so that this is always the case) ${ }^{2}$ Then Frobenius' formula says

$$
\left|\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right)\left(\mathbb{F}_{q}\right)\right|=\left|G\left(\mathbb{F}_{q}\right)\right| \sum_{\chi \in \operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)}\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-2} \prod_{i=1}^{n} \frac{\chi\left(C_{i}\left(\mathbb{F}_{q}\right)\right)}{\chi(1)}\left|C_{i}\left(\mathbb{F}_{q}\right)\right|,
$$

where $\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ is the set of irreducible complex characters of the finite group $G\left(\mathbb{F}_{q}\right)$.
We see evaluating Frobenius' formula is a problem in the world of the representation theory of finite reductive groups. Note we do not need to impose reductivity on the algebraic group G to make use of Frobenius' formula ${ }^{3}$ However, assuming G is reductive gives us access to powerful techniques of Deligne-Lusztig theory.

1.4 Literature

Our work is inspired by the ground-breaking work of Hausel, Letellier and Rodriguez-Villegas. In HRV08, HLRV11], they studied the character variety when $G=\mathrm{GL}_{n}$ and \mathcal{C} consists of semisimple conjugacy classes chosen in a 'generic' sense. The primary benefit of the generic assumption is G / Z acts freely on the representation variety, so the character stack and character variety coincide [HLRV11, Proposition 2.1.4]. The authors count points on character varieties over finite fields, conclude the character variety is polynomial count and analyse the counting polynomial. A significant feature of this work is the use of symmetric functions which arise naturally due to the combinatorial description of $\operatorname{Irr}\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$ originally given in Gre55].

[^1]In Cam17], the author studies the character variety when $G=\operatorname{Sp}_{2 n}$ and Σ is an orientable surface of genus $g \geq 0$ with one puncture. At the puncture, the conjugacy class is semisimple, regular and 'generic' in a sense similar to that of HRV08, HLRV11. In this setting, the generic assumption does not imply G / Z acts freely on the representation variety. Thus, the main difficulties are twofold: understand the G / Z-action on the representation variety and understand the representation theory of $\operatorname{Sp}_{2 n}\left(\mathbb{F}_{q}\right)$. The author finds the stabilisers of this action are finite Cam17, Proposition 3.1.6] and begins to draw on Deligne-Lusztig theory [Cam17, §2.2]. This allows the author to count points on character varieties over finite fields, conclude the character variety is polynomial count and analyse the counting polynomial.

In BK23], the authors consider a general connected reductive group with connected center and an orientable surface of genus $g \geq 0$ with no punctures. Rather than study the character variety directly, the authors study the character stack. This is because, without the presence of punctures, the G / Z-action on the representation variety is difficult to understand and control, but one can still study the representation variety and character stack. The main ingredient in the authors' work is a deep theorem in Deligne-Lusztig theory called Lusztig's Jordan decomposition which describes the irreducible representations of $G\left(\mathbb{F}_{q}\right)$. The authors count points on character stacks over finite fields, conclude the character stack is potentially polynomial count and analyse the counting polynomial.

In KNP23], the authors add punctures to the setting of BK23]; they choose both semisimple regular and unipotent regular conjugacy classes. They study the character variety directly, since the mixture of semisimple regular and unipotent regular conjugacy classes means G / Z acts freely on the representation variety [KNP23, Lemma 3]. In view of Frobenius' formula, the authors must deal with character values at semisimple regular and unipotent regular elements. However, in light of a theorem of Green, Lusztig and Lehrer, many of these character values are zero KNP23, Theorem 14]. This simplifies calculations, reducing them to a problem involving Weyl groups acting on tori [KNP23, §4] and the evaluation of certain character sums [KNP23, §5]. The authors then count point on character varieties over finite fields, conclude the character variety is polynomial count and analyse the counting polynomial.

In this thesis, we study the same character varieties as [KNP23], but only semisimple regular conjugacy classes are chosen. The lack of a unipotent regular conjugacy classes means we are forced to address several problems: the G / Z-action on the representation variety may not be free, Frobenius' formula involves many non-zero character values, and we must explicitly evaluate the character sums seen in KNP23]. To navigate these problems, we define a reductive generalisation of the 'generic' condition seen in HRV08, HLRV11, Cam17]. Therefore, one can view this thesis as a step towards a reductive generalisation of [HRV08, HLRV11] (this thesis is not a generalisation of [Cam17] since $\mathrm{Sp}_{2 n}$ has disconnected centre).

Chapter 2

Main results

2.1 Assumptions and results

Let G be a connected split reductive group over \mathbb{F}_{q} with connected centre Z and maximal split torus $T \subseteq G$. Let Σ be an orientable surface with genus $g \geq 0$ and $n \geq 1$ punctures and fix conjugacy classes $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$ in G. Denote the representation variety by $\mathbf{R}:=\operatorname{Hom}_{\mathcal{C}}\left(\pi_{1}(\Sigma), G\right)$ and recall G acts on \mathbf{R} by simultaneous conjugation with Z acting trivially. Thus, we form the character variety

$$
\mathbf{X}:=\mathbf{R} / /(G / Z)=\mathbf{R} / / G
$$

and the character stack

$$
\mathfrak{X}:=[\mathbf{R} /(G / Z)] .
$$

In this thesis, we make two assumptions on the conjugacy classes $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$:

Assumption 1. Assume

(i) Each C_{i} is the conjugacy class of a strongly regular element $S_{i} \in T$, and
(ii) The product $S_{1} \cdots S_{n}$ lies in $[G, G]$; i.e., $C_{1} \cdots C_{n} \subseteq[G, G]$.

Strongly regular is meant in the sense of Ste65] (i.e., $C_{G}\left(S_{i}\right)=T$) and such elements form a dense open set in G [Ste65, 2.15]. The first assumption implies the centraliser of each C_{i} is connected, as promised in $\$ 1.3$, and the second assumption is necessary for \mathbf{R} to be non-empty.

We are ready to state our first main theorem:
Theorem 2. Away from finitely many primes, the character stack \mathfrak{X} is potentially rational count with counting function given in Theorem56. Furthermore, if $g \geq 1$ then \mathfrak{X} is potentially polynomial count.

We exclude finitely many primes so that the structure and representation theory of $G\left(\mathbb{F}_{q}\right)$ is wellbehaved and the representation variety is smooth and equidimensional. The primes we exclude depend only on the root datum of G. Specifically, we assume the following:

Assumption 3. Assume $\operatorname{char}\left(\mathbb{F}_{q}\right)>2$ is a very good prime for G and does not divide \check{h}, the dual Coxeter number of G.

The first assumption is used in many places throughout this thesis, but the condition involving the dual Coxeter number is only used to ensure smoothness and equidimensionality of \mathbf{R}, c.f. Theorem 7 and KNP23, §2.2]. The following table summarises the very good primes and dual Coxeter numbers:

Type of G	Very good primes		Type of G	\check{h}		Type of G	\check{h}
	$p \nmid n+1$		A_{n}, C_{n}	$n+1$		F_{4}	9
A_{n}, C_{n}, D_{n}	$p>2$		B_{n}	$2 n-1$		E_{6}	12
$G_{2}, F_{4}, E_{6}, E_{7}$	$p>3$		D_{n}	$2 n-2$		E_{7}	18
E_{8}	$p>5$		G_{2}	4		E_{8}	30

Table 2.1: The very good primes and dual Coxeter numbers for various G Kac90, Let05.

We also make a light assumption on g and n :
Assumption 4. Assume $2 g-2+n \geq 1$, in addition to our requirement that $g \geq 0$ and $n \geq 1$.
This assumption excludes the cases $(g, n)=(0,1)$ and $(0,2)$ which can be studied by hand since, in these cases, we have $\pi_{1}(\Sigma) \simeq 1$ and $\pi_{1}(\Sigma) \simeq \mathbb{Z}$, respectively. In the next theorem only, we will also exclude the cases $(g, n)=(0,3)$ and $(1,1)$ by requiring that $2 g-2+n \geq 2]^{1}$

From the counting function, we extract the following information:
Theorem 5. If $2 g-2+n \geq 2$ then the character stack is non-empty of dimension

$$
\operatorname{dim}(\mathfrak{X})=(2 g-2+n) \operatorname{dim}(G)+2 \operatorname{dim}(Z)-n \operatorname{rank}(G)
$$

with number of components equal to

$$
\left|\pi_{0}(\mathfrak{X})\right|=\left|\pi_{0}(Z(\check{G}))\right|
$$

where $Z(\check{G})$ is the centre of the Langlands dual group \check{G}.
So far, we have only analysed the character stack, and we now turn our attention to the character variety. To analyse the character variety, we choose conjugacy classes generically:

Definition 6. We say a tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$ of semisimple conjugacy classes of G is generic if

$$
\prod_{i=1}^{n} X_{i} \notin[L, L]
$$

for all proper Levi subgroups L of G and for all $X_{i} \in C_{i} \cap L$.
This notion of choosing conjugacy classes generically is a generalisation of the one seen in [HLRV11]. In this paper, the authors consider $G=\mathrm{GL}_{n}$ and a generic choice of semisimple conjugacy classes implies G / Z acts freely on \mathbf{R} HLRV11, Proposition 2.1.4]. Thus, in their setting, it is straightforward to show \mathfrak{X} and \mathbf{X} are isomorphic.

Our situation is slightly more subtle. In particular, we have our next main theorem:

[^2]Theorem 7. If \mathcal{C} is generic then
(i) G / Z acts on \mathbf{R} with finite étale stabilisers,
(ii) \mathbf{R} is smooth and equidimensional,
(iii) \mathfrak{X} is a smooth Deligne-Mumford stack,
(iv) \mathbf{X} is a coarse moduli space for \mathfrak{X}, and
(v) \mathfrak{X} and \mathbf{X} have the same number of points over finite fields.

Combining Theorems 2 and 7 yields the following:
Theorem 8. If \mathcal{C} is generic then \mathfrak{X} and \mathbf{X} are potentially polynomial count (away from finitely many primes) with equal counting polynomials with an expression given in Theorem 61 Furthermore, this counting polynomial is independent of \bigodot.

We compute the character variety's dimension and number of components in all cases:
Theorem 9. If \bigodot is generic then the character variety is non-empty of dimension

$$
\operatorname{dim}(\mathbf{X})=(2 g-2+n) \operatorname{dim}(G)+2 \operatorname{dim}(Z)-n \cdot \operatorname{rank}(G)
$$

with number of components equal to

$$
\left|\pi_{0}(\mathbf{X})\right|=\left|\pi_{0}(Z(\check{G}))\right|
$$

where $Z(\check{G})$ is the centre of the Langlands dual group \check{G}.
We also compute the character variety's Euler characteristic in all cases:
Theorem 10. Suppose \mathcal{C} is generic.
(i) If either $g>1$, or $g>0$ and $\operatorname{dim}(Z)>0$, then $\chi(\mathbf{X})=0$,
(ii) If $g=1$ and $\operatorname{dim}(Z)=0$ then $\chi(\mathbf{X})$ may be non-zero, with a formula given in Theorem 64 and
(iii) If $g=0$ and $n \geq 3$ then $\chi(\mathbf{X})$ may be non-zero, with a formula given in Theorem 65 .

When $G=\mathrm{GL}_{n}$ and $g=0$, one can calculate $\chi(\mathbf{X})$ using HLRV11, Theorem 1.2.3] or Mel20, Theorem 7.10] but this is "complicated due to the presence of high-order poles" HLRV11, Remark 5.3.4]. Our formula does not have this issue; it only involves differentiating a smooth function.

Lastly, we prove the character variety obeys a specialisation of curious Poincaré duality:
Theorem 11. If \mathfrak{C} is generic then $\|\mathbf{X}\|$ is a palindromic polynomial; i.e.,

$$
\|\mathbf{X}\|(q)=q^{\operatorname{dim}(\mathbf{X})}\|\mathbf{X}\|(1 / q)
$$

This is the first time this specialisation of curious Poincaré duality has been demonstrated for character varieties associated to general reductive groups; in KNP23, the counting polynomials were not always palindromic. Theorem 11 suggests a curious Poincaré duality, a curious hard Lefschetz and a $P=W$ conjecture for character varieties associated to reductive groups.

2.2 Further directions

We conclude by discussing research directions warranting further attention:
(i) Associated to \mathbf{X} is the mixed Poincaré polynomial $H_{c}(\mathbf{X} ; q, t)$ which provides important information about the Frobenius' action on the (compactly supported) cohomology of \mathbf{X} LRV23, §2.2]. When \mathbf{X} is polynomial count, the counting polynomial is recovered by setting $t=-1$ in the mixed Poincaré polynomial [LRV23, Theorem 2.9]. Therefore, proving \mathbf{X} is polynomial count and obtaining an explicit expression for $\|\mathbf{X}\|$ is a step towards a formula for $H_{c}(\mathbf{X} ; q, t)$. For instance, when $G=\mathrm{GL}_{n}$, there is a conjectural formula for $H_{c}(\mathbf{X} ; q, t)$ when \mathcal{C} is a generic collection of (not necessarily regular) semisimple conjugacy classes HLRV11, Conjecture 1.2.1]. Moreover, there is a known formula for $H_{c}(\mathbf{X} ; q, t)$ when $G=\mathrm{GL}_{2}$ and $n=1$ with conjugacy class representative $\left(\begin{array}{ll}-1 & -1\end{array}\right)$ HRV08. Theorem 1.1.3]. ${ }^{2}$
(ii) There is an additive analogue to our situation. Let $\mathfrak{g}=\operatorname{Lie}(G)$ with Lie bracket $[\cdot, \cdot]$ and recall G acts on \mathfrak{g} by the adjoint action $g \cdot x:=\operatorname{Ad}_{g}(x)$. Let $\mathfrak{t}=\operatorname{Lie}(T)$, fix adjoint orbits O_{1}, \ldots, O_{n} of regular elements $x_{1}, \ldots, x_{n} \in \mathfrak{t}$ and define the additive representation variety

$$
\mathbf{A}:=\left\{\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}, y_{1}, \ldots, y_{n}\right) \in \mathfrak{g}^{2 g+n} \mid\left[a_{1}, b_{1}\right]+\cdots+\left[a_{g}, b_{g}\right]+y_{1}+\cdots+y_{n}=0, y_{i} \in O_{i}\right\}
$$

This inherits the adjoint action of G on \mathfrak{g}, so we form the additive character variety $\mathbf{Y}:=\mathbf{A} / / G$. It has recently been shown \mathbf{Y} is polynomial count when G is a connected split reductive group over \mathbb{F}_{q} with connected centre [Gia24]. Moreover, the additive character variety is conjectured to have deep links to the multiplicative character variety when $G=\mathrm{GL}_{n}$ HLRV11, Remark 1.3.2]. Precisely, at the level of polynomials, it is conjectured $\|\mathbf{Y}\|$ is equal to the 'pure part' of $H_{c}(\mathbf{X} ; q, t)$ HLRV11, §1.2.1], providing constraints for what $H_{c}(\mathbf{X} ; q, t)$ can be.
(iii) In this thesis, we assume T is split and we require an understanding of principal series representations. We appeal to an exclusion theorem (Proposition 25) and a well-known Hecke algebra (Proposition 26). In particular, $\operatorname{End}_{G} R_{T}^{G} \theta$ is isomorphic to a Hecke algebra. To remove the split assumption, we must instead understand the aforementioned endomorphism algebra when T is non-split. To do so, one appeals to the general exclusion theorem of Deligne-Lusztig characters [GM20, Theorem 2.3.2] and cyclotomic Hecke algebras [GM20, §A.6].
(iv) We expect our results hold when G has disconnected centre. In this thesis, we assume G has connected centre to ensure semisimple centralisers in the dual group are connected reductive groups, and to use a simplified version of Lusztig's Jordan decomposition. One reason for expecting generalisation is our results closely mirror those of [Cam17], where an $\mathrm{Sp}_{2 n}$-character variety is studied. Our work does not address this character variety since the centre of $\mathrm{Sp}_{2 n}$ is disconnected. An instance of Lusztig's Jordan decomposition without the assumption of a connected centre is [GM20, Theorem 4.8.24].

[^3]
Chapter 3

Recollections on finite reductive groups

Frobenius' formula involves irreducible characters of finite reductive groups. Therefore, we dedicate this chapter to recalling the relevant theory. The primary references are [DL76, Car93, DM20, GM20.

Throughout this chapter, we work with a connected split reductive group G over $k=\mathbb{F}_{q}$ with connected centre $Z(G)=Z$. Fix a maximal split torus $T \subseteq G$ and let (G, T) have root datum $(X, \Phi, \check{X}, \check{\Phi})$ with Weyl group W. We also fix a Borel subgroup $B \subseteq G$ so that Φ has positive roots Φ^{+}and simple roots Δ. Then G has Langlands dual \check{G}, which is a connected split reductive group over k with maximal split torus $\check{T}:=\operatorname{Spec}(k[X])$ and with (\check{G}, \check{T}) having root datum $(\check{X}, \check{\Phi}, X, \Phi)$.

We start by defining several families of groups which are crucial to this thesis (namely, pseudoLevi subgroups, Levi subgroups and endoscopy groups) in $\$ 3.1$. Afterwards, we explain a deep result in representation theory which parameterises the irreducible characters of finite reductive groups in \$3.2. We briefly review polynomials describing the cardinality of connected split reductive groups and the degrees of irreducible characters in $\$ 3.3$. In $\$ 3.4$, we closely examine an important family irreducible characters, called principal series characters, which play a key role in our point-count of the character variety. Lastly, in $\$ 3.5$, we gather necessary facts about Alvis-Curtis duality, an important duality of characters which will help us to analyse counting polynomials of character varieties.

3.1 Pseudo-Levi subgroups and endoscopy groups

In this section, we review several families of groups associated to G which are crucial in this thesis. To this end, let $\Psi \subseteq \Phi$ be a root subsystem and denote by $G(\Psi)$ the connected split reductive group over k with root datum $(X, \Psi, \check{X}, \check{\Psi})$; this always contains T but is not always a subgroup of G.

In Definition 6, we referred to the so-called Levi subgroups of G, defined as follows:
Definition 12. A subsystem $\Psi \subseteq \Phi$ is a Levi subsystem if it is of the form $\Phi \cap E$ for some vector subspace $E \subseteq \operatorname{span}_{\mathbb{R}}(\Phi) \cdot{ }^{\top}$ The groups $G(\Psi)$ are called Levi subgroups of G containing T.

We have a convenient description of the Levi subsystems of Φ :

[^4]Proposition 13 (Proposition 24 of Bou02]). A subsystem $\Psi \subseteq \Phi$ is a Levi subsystem if and only if it is of the form $w \cdot\langle S\rangle$ for some $w \in W$ and $S \subseteq \Delta$. Here, $\langle S\rangle$ means the closed subsystem $\operatorname{span}_{\mathbb{Z}}(S) \cap \Phi$.

It is important for us to consider a larger class of closely-related subsystems and subgroups:
Definition 14. A subsystem $\Psi \subseteq \Phi$ is a pseudo-Levi subsystem if it arises as the root system of a connected centraliser subgroup of semisimple element in G. The groups $G(\Psi)$ are called pseudoLevi subgroups of G containing T.

Pseudo-Levi subsystems are characterised by Deriziotis' Criterion [Hum95, §2.15]:
Theorem 15. Suppose Φ is irreducible with simple roots Δ and highest root θ. Let H be a connected reductive subgroup of G containing T with root system $\Psi \subseteq \Phi$. Then Ψ is a pseudo-Levi subsystem if and only if $\Psi=w \cdot\langle S\rangle$ for some $w \in W$ and some proper subset $S \subset \Delta \sqcup\{-\theta\} \cdot{ }^{2}$

This means the collection of pseudo-Levi subgroups of G containing T is independent of the ground field and we know exactly what they are. It also means we can take Deriziotis' Criterion as a definition of pseudo-Levi subsystems.

There is also an analogue of Deriziotis' Criterion for groups with reducible root systems which we briefly state now. Suppose $\Phi=\Phi_{1} \sqcup \cdots \sqcup \Phi_{r}$ with each Φ_{i} irreducible and simple roots Δ_{i}. Let θ^{i} be the highest root of Φ_{i} and write $\tilde{\Delta}_{i}:=\Delta_{i} \sqcup\left\{-\theta^{i}\right\}$. Then Deriziotis' Criterion is the same as before, but we we say Ψ is a pseudo-Levi subsystem if and only if $\Psi=w \cdot\langle S\rangle$ for some $w \in W$ and some proper subset $S \subseteq \tilde{\Delta}_{1} \sqcup \cdots \sqcup \tilde{\Delta}_{r}$.

We distinguish another important family of pseudo-Levi subgroups which will be key later:
Definition 16. A subsystem of Φ is isolated in Φ if it is not contained in a proper Levi subsystem of Φ, and a subgroup of G containing T is isolated in G if its root system is an isolated subsystem in Φ.

We have a description of the isolated pseudo-Levi subgroups à la Deriziotis' Criterion:
Proposition 17. Suppose L is a pseudo-Levi subgroup of G containing T with root system of the form $w \cdot\langle S\rangle$ for some $w \in W$ and $S \subset \Delta \sqcup\{-\theta\}$. Then L is isolated in G if and only if $|S|=|\Delta|$.

Proof. If $|S|<|\Delta|$ then the Levi subgroup of G containing T with root system $w \cdot\langle S\rangle$ would be a proper Levi subgroup of G containing T and L, so L could not be isolated. Conversely, if $|S|=|\Delta|$ and L were not isolated then there would be some proper Levi subgroup of G containing L, but $|S|=|\Delta|$ contradicts properness of the Levi subgroup.

Rather than work with the pseudo-Levi subsystems of $\check{\Phi}$ and pseudo-Levi subgroups of \check{G}, we often work with endoscopy subsystems of Φ and endoscopy groups of G, defined as follows:

Definition 18. A subsystem $\Psi \subseteq \Phi$ is an endoscopy system if $\check{\Psi}$ is a pseudo-Levi subsystem of $\check{\Phi}$. A connected split reductive group K (not necessarily a subgroup of G) is an endoscopy group of G if the dual group \check{K} is a pseudo-Levi subgroup of \check{G} containing \check{T}.

[^5]Endoscopy groups of G need not lie in G. For instance, consider $G=\mathrm{SO}_{13}$. Then $\check{G}=\mathrm{Sp}_{12}$ contains a pseudo-Levi subgroup $\mathrm{Sp}_{6} \times \mathrm{Sp}_{6}$, so $\mathrm{SO}_{7} \times \mathrm{SO}_{7}$ is an endoscopy group of SO_{13}. However, it cannot be a subgroup of SO_{13} because $B_{3} \times B_{3}$ does not arise in the Borel-de Siebenthal algorithm (which determines all possible closed subsystems of Φ) applied to B_{7} Kan01, §12].

We define isolated endoscopy groups analogously:
Definition 19. An endocopy subsystem $\Psi \subseteq \Phi$ is isolated in Φ if $\check{\Psi}$ is not contained in a proper Levi subsystem of $\check{\Phi}$. Then an endoscopy group of G containing T is isolated with respect to G if its root system is an endoscopy subsystem isolated in $\Phi \cdot 3$

We give two important examples to keep in mind when navigating pseudo-Levi subsystems, Levi subsystems and isolated pseudo-Levi subsystems.

Firstly, consider $G=\mathrm{SO}_{5}$. We have $\Phi=B_{2}=\langle\alpha, \beta\rangle$ with highest root $\theta=2 \alpha+\beta$. Computing $w \cdot\langle S\rangle$ for all $w \in W$ and $S \subset \Delta \sqcup\{-\theta\}$ yields seven pseudo-Levi subsystems:
(i) B_{2},
(ii) $A_{1} \times A_{1} \simeq\langle\beta, \theta\rangle$,
(iii) $A_{1} \simeq\langle\alpha\rangle \simeq\langle\beta\rangle \simeq\langle\theta\rangle \simeq\langle\alpha+\beta\rangle$, and
(iv) \emptyset.

Clearly, the Levi subsystems are $B_{2},\langle\alpha\rangle$ and $\langle\beta\rangle$ and the isolated pseudo-Levi subsystems are B_{2} and $A_{1} \times A_{1}$. We visualise the Hasse diagram of pseudo-Levi subsystems ordered by inclusion below:

Secondly, consider $G=G_{2}$. We have $\Phi=G_{2}=\langle\alpha, \beta\rangle$ with highest root is $\theta=3 \alpha+2 \beta$. Computing $w \cdot\langle S\rangle$ for all $w \in W$ and $S \subset \Delta \sqcup\{-\theta\}$ yields twelve pseudo-Levi subsystems:
(i) G_{2},
(ii) $A_{2} \simeq\langle\beta, 3 \alpha+\beta\rangle$,
(iii) $A_{1} \times A_{1} \simeq\langle\alpha, 3 \alpha+2 \beta\rangle \simeq\langle\beta, 2 \alpha+\beta\rangle \simeq\langle\alpha+\beta, 3 \alpha+\beta\rangle$,
(iv) $A_{1} \simeq\langle\alpha\rangle \simeq\langle\beta\rangle \simeq\langle\alpha+\beta\rangle \simeq\langle 2 \alpha+\beta\rangle \simeq\langle 3 \alpha+\beta\rangle \simeq\langle 3 \alpha+2 \beta\rangle$, and
(v) \emptyset.

[^6]The Levi subsystems are $G_{2},\langle\alpha\rangle$ and $\langle\beta\rangle$ and the isolated pseudo-Levi subsystems are G_{2}, A_{2} and all copies of $A_{1} \times A_{1}$. We visualise the Hasse diagram of pseudo-Levi subsystems ordered by inclusion below:

Using Proposition 17, we summarise the isolated pseudo-Levi subsystems below:

Type of Φ	Isolated pseudo-Levi subsystems of Φ
$A_{n}, n \geq 1$	A_{n} only
$B_{n}, n \geq 2$	$B_{n}, A_{1} \times A_{1} \times B_{n-2}, A_{3} \times B_{n-3}$,
$C_{n}, n \geq 2$	$A_{1} \times D_{n-1}, D_{n}, B_{n-r} \times D_{r}(n-2 \geq r \geq 4)$
$D_{n}, n \geq 4$	$C_{n}, A_{1} \times C_{n-1}, C_{n-r} \times C_{r}(n-2 \geq r \geq 2)$
$G_{2}, A_{1} \times A_{1} \times D_{n-2}, D_{n-r} \times D_{r}(n-4 \geq r \geq 4)$	
F_{4}	$G_{2}, A_{2}, A_{1} \times A_{1}$
E_{6}	$F_{4}, A_{1} \times C_{3}, A_{2} \times A_{2}, A_{1} \times A_{3}, B_{4}$
E_{7}	$E_{6}, A_{1} \times A_{5}, A_{2} \times A_{2} \times A_{2}$
E_{8}	$E_{7}, A_{7}, A_{1} \times D_{6}, A_{2} \times A_{5}, A_{1} \times A_{3} \times A_{3}$
	$E_{8}, A_{1} \times E_{7}, A_{2} \times E_{6}, A_{3} \times D_{5}, A_{4} \times A_{4}$,
$A_{1} \times A_{2} \times A_{5}, A_{1} \times A_{7}, A_{8}, D_{8}$	

Table 3.1: The isolated pseudo-Levi subsystems of irreducible root systems.

Lastly, we collect important properties of isolated endoscopy groups and Levi subgroups:
Proposition 20. If L is an isolated endoscopy group of G containing T then $Z(L)^{\circ}=Z(G)^{\circ}$. Moreover, the same is true if L is an isolated pseudo-Levi subgroup of G containing T.

Proof. Since L is isolated with respect to G, we have $\operatorname{rank}(L)=\operatorname{rank}(G)$. Then

$$
\operatorname{dim}(T)-\operatorname{dim}(Z(L))=\operatorname{rank}(L)=\operatorname{rank}(G)=\operatorname{dim}(T)-\operatorname{dim}(Z(G)),
$$

so $\operatorname{dim}(Z(L))=\operatorname{dim}(Z(G))$ and we must have $\operatorname{dim}\left(Z(L)^{\circ}\right)=\operatorname{dim}\left(Z(G)^{\circ}\right)$, c.f. Gec13, Proposition 1.3.13, Corollary 1.3.14] and therefore $Z(L)^{\circ}=Z(G)^{\circ}$ since both lie in T.

Proposition 21. If L is an isolated endoscopy group of G containing T then $T \cap[L, L]=T \cap[G, G]$.
Proof. If G is semisimple then L is semisimple too and $T \cap[L, L]$ and $T \cap[G, G]$ both equal T. If G is not semisimple then observe three facts: $[G, G]$ and $[L, L]$ are semisimple, $[L, L]$ is isolated with respect to $[G, G]$, and $T \cap[G, G]$ is a maximal split torus of $[G, G]$. Then the semisimple case implies

$$
T \cap[L, L]=T \cap([G, G] \cap[[L, L],[L, L]])=T \cap([G, G] \cap[[G, G],[G, G]])=T \cap[G, G] .
$$

Proposition 22. If L is a Levi subgroup of G containing T with $\operatorname{rank}[L, L]=\operatorname{rank}[G, G]$ then $L=G$.

Proof. Observe L and G have the same number of simple roots since $[L, L]$ and $[G, G]$ do. Since the root system of L must be generated by a subset of the simple roots of G, we must have $L=G$.

3.2 Lusztig's Jordan decomposition

One of the deepest results in the representation theory of finite reductive groups is Lusztig's Jordan decomposition of the set of complex irreducible characters $\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, which we will call the set of $G\left(\mathbb{F}_{q}\right)$-characters from now on. In essense, it says we can parameterise $G\left(\mathbb{F}_{q}\right)$-characters using two pieces of data: a conjugacy class of a semisimple element $x \in \mathscr{G}$, and a so-called unipotent character of the semisimple centraliser subgroup \check{G}_{x}.

In general, centraliser subgroups \breve{G}_{x} of semisimple elements are not connected reductive groups, complicating the definition of unipotent characters (e.g., take $\check{G}=\mathrm{PGL}_{2}$ and $x=\left({ }^{1}{ }_{-1}\right)$). However, under our assumptions, the aforementioned centraliser subgroups are connected. This is guarenteed if the derived subgroup of \check{G} is simply connected [Car93, Theorem 3.5.4, Theorem 3.5.6], which happens if G has a smooth connected centre DL76, Proposition 5.23]. We assume char $\left(\mathbb{F}_{q}\right)$ is very good for G, ensuring smoothness of the connected centre [DL76, p. 131].

We say a $G\left(\mathbb{F}_{q}\right)$-character is unipotent if it appears as a summand in the Deligne-Lusztig character $R_{T^{\prime}}^{G} 1$ for some maximal torus $T^{\prime} \subseteq G$. Deligne-Lusztig characters are defined using a deep blend of algebraic geometry, number theory and representation theory which we will not discuss, but these characters are explained in DL76, Car93, DM20, GM20. The set of unipotent characters is denoted $\operatorname{Uch}\left(G\left(\mathbb{F}_{q}\right)\right)$. A unipotent character is called principal if it appears as a summand in $R_{T}^{G} 1=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} 1$, and such characters are key to our point-count of the character variety ${ }^{4}$

Remarkably, Lusztig completely classified unipotent characters. Moreover, they admit uniform parameterisations and their degrees are known GM20, Theorem 4.5.8]. This is due to Lusztig's theory of symbols in classical type Lus77] and case-by-case analysis in exceptional type Lus84.

We now state Lusztig's Jordan decomposition:

Theorem 23 (Theorem 4.23 of [us84]). If G has connected centre then there is a bijection

$$
\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right) \longleftrightarrow \bigsqcup_{\begin{array}{c}
{[x] \subseteq \check{G}\left(\mathbb{F}_{q}\right)} \\
{[x] \text { semisimple }} \\
\text { conjugacy class }
\end{array}}^{\bigsqcup} \operatorname{Uch}\left(\check{G}_{x}\left(\mathbb{F}_{q}\right)\right)
$$

such that if $\chi \in \operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ is paired with $\rho \in \operatorname{Uch}\left(\check{G}_{x}\left(\mathbb{F}_{q}\right)\right)$ then $\chi(1)$ and $\rho(1)$ are related by

$$
\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}=q^{r(x)} \frac{\left|\check{G}_{x}\left(\mathbb{F}_{q}\right)\right|}{\rho(1)},
$$

where $r(x):=\left|\Phi(\check{G})^{+}\right|-\left|\Phi\left(\check{G}_{x}\right)^{+}\right|$is the difference between the number of positive roots.

[^7]In other words, there is a bijection from the set of $G\left(\mathbb{F}_{q}\right)$-characters to the set of pairs $([x], \rho)$ where $[x]$ is a $\check{G}\left(\mathbb{F}_{q}\right)$-conjugacy class of a semisimple $x \in \check{G}$ and ρ is a unipotent character of $\check{G}_{x}\left(\mathbb{F}_{q}\right)$. Moreover, this bijection allows us to keep track of dimensions of $G\left(\mathbb{F}_{q}\right)$-characters.

It will be important later in Chapter 4 to pin down an exact bijection; there are potentially multiple bijections satisfying the degree formula. Precisely, we use the unique bijection guarenteed by [GM20, Theorem 4.7.1]. We will use this bijection to define a map later in $\$ 4.1$.

3.3 Order polynomials and degree polynomials

It is well-known that the orders of connected split reductive groups over \mathbb{F}_{q} and the degrees of their irreducible characters are polynomials in q. That is, we have $\left|G\left(\mathbb{F}_{q}\right)\right|=\|G\|(q)$ for some polynomial $\|G\|$ and, given $\chi \in \operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$, we have $\chi(1)=\|\chi\|(q)$ for some polynomial $\|\chi\|$ GM20]. We call $\|G\|$ the order polynomial of G and $\|\chi\|$ the degree polynomial of $\chi .^{5}$

To count points on the character variety, we need a description of $\left|G\left(\mathbb{F}_{q}\right)\right|$:
Proposition 24 (Theorem 1.6 .7 of GM20). Let B be a Borel subgroup of G containing T, let U be the unipotent radical of B and write $P_{W}(q):=\sum_{w \in W} q^{\text {length }(w)}$ for the Poincaré polynomial of W. Then

$$
\left|G\left(\mathbb{F}_{q}\right)\right|=\left|U\left(\mathbb{F}_{q}\right)\right| \cdot\left|T\left(\mathbb{F}_{q}\right)\right| \cdot\left|(G / B)\left(\mathbb{F}_{q}\right)\right|=q^{\left|\Phi^{+}\right|}(q-1)^{\operatorname{dim}(T)} P_{W}(q)
$$

We give three examples of order polynomials:
(i) If $G=\mathrm{GL}_{3}$ then $\Phi \simeq A_{2}, \operatorname{dim}(T)=3$ and $W \simeq S_{3}$. Thus,

$$
\left\|\mathrm{GL}_{3}\right\|(q)=\left|\mathrm{GL}_{3}\left(\mathbb{F}_{q}\right)\right|=q^{3}(q-1)^{3}\left(q^{3}+2 q^{2}+2 q+1\right)
$$

(ii) If $G=\mathrm{SO}_{5}$ then $\Phi \simeq B_{2}, \operatorname{dim}(T)=2$ and $W \simeq D_{8}$. Thus,

$$
\left\|\mathrm{SO}_{5}\right\|(q)=\left|\mathrm{SO}_{5}\left(\mathbb{F}_{q}\right)\right|=q^{4}(q-1)^{2}\left(q^{4}+2 q^{3}+2 q^{2}+2 q+1\right)
$$

(iii) If G is the semisimple group of adjoint type G_{2} then $\Phi \simeq G_{2}, \operatorname{dim}(T)=2$ and $W \simeq D_{12}$. Thus,

$$
\|G\|(q)=\left|G\left(\mathbb{F}_{q}\right)\right|=q^{6}(q-1)^{2}\left(q^{6}+2 q^{5}+2 q^{4}+2 q^{3}+2 q^{2}+2 q+1\right) .
$$

3.4 Principal series characters

In view of Frobenius' formula, we must evaluate $G\left(\mathbb{F}_{q}\right)$-characters at strongly regular elements of T in order to count points on the character variety. A deep theorem due to Deligne-Lusztig describes these character values using the so-called principal series characters of $G\left(\mathbb{F}_{q}\right)$ DL76. Corollary 7.6]. To this end, we review these characters and their relevant properties now.

A principal series character is a $G\left(\mathbb{F}_{q}\right)$-character appearing as summand in

$$
R_{T}^{G} \theta=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \tilde{\theta}
$$

[^8]for some $\theta \in T\left(\mathbb{F}_{q}\right)^{\vee}$, where $T\left(\mathbb{F}_{q}\right)^{\vee}:=\operatorname{Hom}\left(T\left(\mathbb{F}_{q}\right), \mathbb{C}^{\times}\right)$denotes the Pontryagin dual of the finite abelian group $T\left(\mathbb{F}_{q}\right)$ and $\tilde{\theta}: B\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{C}^{\times}$is the usual inflation of θ from $T\left(\mathbb{F}_{q}\right)$ to $B\left(\mathbb{F}_{q}\right)$.

A key observation is principal series characters obey a special dichotomy ${ }^{6}$ Before we state it, recall W acts on $T\left(\mathbb{F}_{q}\right)^{\vee}$ in the following manner. The Weyl group W acts on $T\left(\mathbb{F}_{q}\right)$ by $w \cdot S:=\dot{w} S \dot{w}^{-1}$, where \dot{w} is any lift of w (i.e., $w=\dot{w} T \in W=N_{G}(T) / T$). This action is well-defined since \dot{w} normalises T. Then W acts on $T\left(\mathbb{F}_{q}\right)^{\vee}$ by $(w \cdot \theta)(S):=\theta(w \cdot S)$.

We now state the dichotomy of principal series characters:

Proposition 25 (Corollary 6.3 of (DL76]). Given $\theta, \theta^{\prime} \in T\left(\mathbb{F}_{q}\right)^{\vee}$, exactly one of the following is true:
(i) $R_{T}^{G} \theta$ and $R_{T}^{G} \theta^{\prime}$ share no irreducible summands (up to isomorphism), or
(ii) θ and θ^{\prime} are related by the action of W on $T\left(\mathbb{F}_{q}\right)^{\vee}$ in which case $R_{T}^{G} \theta \simeq R_{T}^{G} \theta^{\prime}$.

A deeper understanding of principal series characters is afforded by a certain Hecke algebra denoted $\mathcal{H}(G, \theta)$. This is the unital associative \mathbb{C}-algebra of functions $f: G\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{C}$ satisfying $f\left(b g b^{\prime}\right)=\tilde{\theta}(b) f(g) \tilde{\theta}\left(b^{\prime}\right)$ for all $g \in G\left(\mathbb{F}_{q}\right)$ and $b, b^{\prime} \in B\left(\mathbb{F}_{q}\right)$, with convolution product

$$
\left(f f^{\prime}\right)(g):=\sum_{x y=g} f(x) f^{\prime}(y)
$$

The utility of Hecke algebras is as follows. Irreducible finite-dimensional complex $\mathcal{H}(G, \theta)$ characters are in bijection with irreducible constituents of $R_{T}^{G} \theta$. Moreover, the multiplicity of an irreducible consistituent of $R_{T}^{G} \theta$ is recorded by the dimension of the associated $\mathcal{H}(G, \theta)$-character. Both of these claims follow from the Double Centraliser Theorem EGH ${ }^{+}$11, Theorem 5.18.1] in light of the isomorphism $\mathcal{H}(G, \theta) \simeq \operatorname{End}_{G} R_{T}^{G} \theta$. Another proof is given in [CR81, Theorem 11.25].

Furthermore, it is well-known (e.g., via Tits' deformation theorem [GP00, Theorem 7.4.6], originally proven in [CIK71, Theorem 1.11]) that $\mathcal{H}(G, \theta)$ is isomorphic to the group algebra $\mathbb{C}\left[W_{\theta}\right]$, and this isomorphism preserves isomorphism classes of irreducible representations. Here, W_{θ} is the stabiliser subgroup of θ under the action of W on $T\left(\mathbb{F}_{q}\right)^{\vee}$, and is a Coxeter group because G has connected centre DL76, 5.13].

We summarise the above in the following proposition:

Proposition 26. If G has connected centre then there are canonical bijections

$$
\left\{\begin{array}{c}
\text { Irreducible } \\
\text { constituents of } R_{T}^{G} \theta
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Irreducible } \\
\text { representations of } \mathcal{H}(G, \theta)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Irreducible } \\
\text { representations of } W_{\theta}
\end{array}\right\}
$$

such that if $\chi \in R_{T}^{G} \theta$ has image $\zeta \in \operatorname{Irr}(\mathcal{H}(G, \theta))$ and $\phi \in \operatorname{Irr}\left(W_{\theta}\right)$, then

$$
\left\langle\chi, R_{T}^{G} \theta\right\rangle=\operatorname{dim}(\zeta)=\operatorname{dim}(\phi)
$$

[^9]
3.5 Alvis-Curtis duality of characters

Alvis-Curtis duality was originally defined in [Alv79, Cur80] as a generalisation of the relationship between the trivial and Steinberg representations of $G\left(\mathbb{F}_{q}\right)$. It has been noted as early as HRV08, Hau13] that this duality is responsible for the palindromicity of the counting polynomials of $\mathrm{GL}_{n^{-}}$ character varieties. As we shall see, this is also the case for the character varieties in this thesis. For our purposes, Alvis-Curtis duality is useful because it yields an expression for $\|\chi\|(1 / q)$, originally proven in Alv82, Corollary 3.6]. That is, it allows us to invert q in the polynomial describing the character degree $\chi(1)$.

We recall the necessary properties of Alvis-Curtis duality now:
Proposition 27. There is an involution D_{G} on the space of complex-valued $G\left(\mathbb{F}_{q}\right)$-class functions, defined explicitly in [DM20, §7.2] and [GM20, §3.4], with the following properties:
(i) If $\chi \in R_{T}^{G} \theta$ then $D_{G}(\chi) \in R_{T}^{G} \theta$,
(ii) If $\chi \in R_{T}^{G} \theta$ is matched with $\phi \in \operatorname{Irr}\left(W_{\theta}\right)$ according to Proposition 26 then $D_{G}(\chi)$ is matched with $\phi \otimes \operatorname{sgn}$, where $\operatorname{sgn} \in \operatorname{Irr}\left(W_{\theta}\right)$ is the sign character of W_{θ}, and
(iii) If $\chi \in R_{T}^{G} \theta$ then $\left\|D_{G}(\chi)\right\|(q)=q^{\left|\Phi(G)^{+}\right|}\|\chi\|(1 / q)$,

Proof. The first part is a weaker version of DM20, Corollary 7.2.9], the second part is DM20, Proposition 7.2.13], and the third part is [GM20, Proposition 3.4.21].

For example, if $G=\mathrm{GL}_{3}$ and θ is trivial then $W_{\theta} \simeq S_{3}$ and

$$
R_{T}^{G} 1=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} 1=\operatorname{triv} \oplus \chi_{q(q+1)}^{\oplus 2} \oplus \operatorname{St.}
$$

Here, $\chi_{q(q+1)}$ is the unipotent character of degree $q(q+1)$ and St is the Steinberg character. According to Proposition 26, the trivial $\mathrm{GL}_{3}\left(\mathbb{F}_{q}\right)$-representation is matched with the trivial S_{3}-character, the Steinberg representation is matched with the sign character of S_{3}, and $\chi_{q(q+1)}$ is matched with the twodimensional character $\phi_{2 D} \in \operatorname{Irr}\left(S_{3}\right)$. We know $\operatorname{sgn} \otimes \operatorname{sgn}=\operatorname{triv}$ so $D_{G}(\mathrm{St})=$ triv and $D_{G}($ triv $)=\mathrm{St}$, and $\phi_{2 D} \otimes \operatorname{sgn}=\phi_{2 D}$ so $D_{G}\left(\chi_{q(q+1)}\right)=\chi_{q(q+1)}$. We give a visualisation below:

$$
\begin{array}{ccc}
S_{3} \text {-characters: } & \text { triv } \underbrace{\stackrel{-\otimes \mathrm{sgn}}{<}}_{-\otimes \mathrm{sgn}} \operatorname{sgn} & \phi_{2 D} \\
\mathrm{GL}_{3}\left(\mathbb{F}_{q}\right) \text {-characters: } \quad & \text { triv } \underbrace{D_{G}}_{D_{G}} \mathrm{St} & \chi_{q(q+1)} \\
D_{G}
\end{array}
$$

Chapter 4

The type of a $G\left(\mathbb{F}_{q}\right)$-character

In this chapter, we introduce the type of a $G\left(\mathbb{F}_{q}\right)$-character. This is data independent of the ground field which remembers enough information about the character to evaluate expressions appearing in Frobenius' formula. The idea of a type follows naturally from Lusztig's Jordan decomposition of $\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right.$ (c.f. Theorem 23). Our types are closely connected to those used in HLRV11. Cam17] to count points on $\mathrm{GL}_{n^{-}}$and $\mathrm{Sp}_{2 n}$-character varieties; these connections are explained in $\$ 4.3$ and $\S 4.4$. But first, we define types in $\$ 4.1$ and explain their main benefit in $\$ 4.2$.

4.1 G-types and the type map

Consider the collection of pairs (L, ρ) where L is an endoscopy group of G containing T and ρ is a principal unipotent character of $L\left(\mathbb{F}_{q}\right)$. Since W acts on the root system of G, it also acts on the collection of pairs (L, ρ) by $w \cdot(L, \rho):=\left(L^{\prime}, \rho^{\prime}\right)$, where $L^{\prime}=\dot{w} L \dot{w}^{-1}$ and $\rho^{\prime}(\ell):=\rho\left(\dot{w} \ell \dot{w}^{-1}\right) \cdot{ }^{1}$

We are ready to define G-types:
Definition 28. A G-type is the W-orbit of a pair (L, ρ), denoted $\tau=[(L, \rho)]=:[L, \rho]$.
The set of G-types is denoted $\mathcal{T}(G)$. This set is independent of q and depends only on the root datum of G by Proposition 15 and [GM20, Theorem 4.5.8]. We have defined G-types for two reasons, which we explain now.

The first reason is Lusztig's Jordan decomposition implies there is a type map

$$
\mathscr{T}:\left\{\text { Principal series characters of } G\left(\mathbb{F}_{q}\right)\right\} \rightarrow \mathcal{T}(G), \quad \mathscr{T}(\chi)=[L, \rho],
$$

where L and ρ are determined using Lusztig's Jordan decomposition. Explicitly, \mathscr{T} is defined as follows. A principal series character $\chi \in R_{T}^{G} \theta$ is well-defined up to W-conjugacy by Proposition 25 . Under the identification $\theta \in T\left(\mathbb{F}_{q}\right)^{\vee} \simeq \check{T}\left(\mathbb{F}_{q}\right)$, the dual of the centraliser subgroup \check{G}_{θ}, denoted G_{θ}, is an endoscopy group of G containing T. Moreover, a choice of irreducible summand in $R_{T}^{G} \theta$ is the same as a choice of principal unipotent character of $\check{G}_{\theta}\left(\mathbb{F}_{q}\right)$ (c.f. Propositition 26) which is the same as a choice of principal unipotent character of $G_{\theta}\left(\mathbb{F}_{q}\right)$ [GM20, Remark 2.6.5].

[^10]The second reason is Lusztig's Jordan decomposition implies if χ is a principal series $G\left(\mathbb{F}_{q}\right)$ character with G-type $\tau=[L, \rho]$ then

$$
\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}=q^{\left|\Phi(G)^{+}\right|-\left|\Phi(L)^{+}\right|} \frac{\left|L\left(\mathbb{F}_{q}\right)\right|}{\rho(1)} .
$$

This expression appears in Frobenius' formula and we explain how this helps us count points in $\$ 4.2$.
We remark that one can broaden the definition of G-types to include all endoscopy groups of G (not just those containing T), allowing one to define an extended type map defined on all $G\left(\mathbb{F}_{q}\right)$ characters, not just the principal series characters, using Lusztig's Jordan decomposition. For instance, if χ is a cuspidal character of $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ then this extended type map sends χ to $\left[T_{\text {non-split }}\right.$, triv $]$ where $T_{\text {non-split }}$ is a maximal non-split torus in GL_{2}. This is essentially the approach taken in HLRV11, $\S 4.1]$ to count points on GL_{n}-character varieties; see $\$ 4.3$ for details.

4.2 Frobenius' formula with types

Recall from $\$ 2.1$ the representation variety

$$
\mathbf{R}:=\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}, Y_{1}, \ldots, Y_{n}\right) \in G^{2 g} \times \prod_{i=1}^{n} C_{i} \mid\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right] Y_{1} \cdots Y_{n}=1\right\}
$$

and recall from $\$ 1.3$ that we can count points on \mathbf{R} using Frobenius' formula

$$
\frac{\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|}{\left|G\left(\mathbb{F}_{q}\right)\right|}=\sum_{\chi \in \operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)}\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-2} \prod_{i=1}^{n} \frac{\chi\left(S_{i}\right)}{\chi(1)}\left|C_{i}\left(\mathbb{F}_{q}\right)\right| .
$$

In this section, we rewrite Frobenius' formula using the fibres of the type map, which will elucidate several aspects of the point-count of the representation variety. To do so, we must first recall a deep result of Deligne-Lusztig telling us how to evaluate characters at strongly regular elements:

Proposition 29 (Corollary 7.6 of [DL76]). If $\chi \in \operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ and $S \in T$ is strongly regular then

$$
\chi(S)=\sum_{\theta \in T\left(\mathbb{F}_{q}\right)^{\vee}}\left\langle\chi, R_{T}^{G} \theta\right\rangle \theta(S) .
$$

In particular, $\chi(S)=0$ unless χ is a principal series character.
This means, when point-counting using Frobenius' formula, only principal series characters of $G\left(\mathbb{F}_{q}\right)$ contribute to the point-count. In light of this fact, we are ready to reformulate Frobenius' formula using types. To this end, fix a G-type $\tau=[L, \rho]$ and define

$$
\|\tau\|(q):=q^{\left|\Phi(G)^{+}\right|-\mid \Phi(L)^{+}} \frac{\|L\|(q)}{\|\rho\|(q)}
$$

and the character sum

$$
S_{\tau}(q):=\sum_{\chi \in \mathscr{T}^{-1}(\tau)} \prod_{i=1}^{n} \chi\left(S_{i}\right)
$$

where $\|L\|(q):=\left|L\left(\mathbb{F}_{q}\right)\right|$ and $\|\rho\|(q):=\rho(1)$ (c.f. §3.3).

Proposition 30. Let \mathbf{R} be the representation variety under Assumption 1 ; i.e., each C_{i} is the conjugacy class of a strongly regular $S_{i} \in T$ and $C_{1} \cdots C_{n} \subseteq[G, G]$. Then Frobenius' formula with types is

$$
\frac{\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|}{\left|G\left(\mathbb{F}_{q}\right)\right|}=\frac{1}{\left|T\left(\mathbb{F}_{q}\right)\right|^{n}} \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

Proof. In view of Proposition 29, expand Frobenius' formula using the fibres $\mathscr{T}^{-1}(\tau)$ to obtain

$$
\frac{\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|}{\left|G\left(\mathbb{F}_{q}\right)\right|}=\sum_{\tau \in \mathcal{T}(G)} \sum_{\chi \in \mathscr{T}^{-1}(\tau)}\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-2} \prod_{i=1}^{n} \frac{\chi\left(S_{i}\right)}{\chi(1)}\left|C_{i}\left(\mathbb{F}_{q}\right)\right| .
$$

Apply the formula $\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}=q^{\left|\Phi(G)^{+}\right|-\left|\Phi(L)^{+}\right| \frac{\left|L\left(\mathbb{F}_{q}\right)\right|}{\rho(1)}}$ given in $\$ 4.1$ to obtain

$$
\frac{\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|}{\left|G\left(\mathbb{F}_{q}\right)\right|}=\left(\prod_{i=1}^{n} \frac{\left|C_{i}\left(\mathbb{F}_{q}\right)\right|}{\left|G\left(\mathbb{F}_{q}\right)\right|}\right) \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q) .
$$

Each $S_{i} \in T$ is strongly regular, meaning $C_{G}\left(S_{i}\right)=T$, so the proof is concluded by applying the orbit-stabiliser theorem to the conjugaction action of $G\left(\mathbb{F}_{q}\right)$ on itself.

It is important to note $\|\tau\|(q)$ is a polynomial since the root system of L is contained in the root system of G and $\|\rho\|(q)$ always divides $\|L\|(q)$ GM20, Remark 2.3.27]. Therefore polynomiality of $\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|$ is reduced to the polynomiality of $S_{\tau}(q)$; the latter is the focus of Chapter 6

4.3 Green-types

In this section, we explain why G-types generalise the types seen in (HLRV11], which we call Greentypes due to their original formulation by Green [Gre55]. To this end, we recall some definitions and fix some notation. By a partition, we mean a decreasing list of non-negative integers

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)
$$

with only finitely many non-zero λ_{i}. We also denote a partition by $\lambda=1^{m_{1}} 2^{m_{2}} 3^{m_{3}} \ldots$ where $m_{i}>0$ is the number of times i appears in λ. We keep track of two important statistics: the length of λ is the smallest non-negative integer $\ell=\ell(\lambda)$ such that $\lambda_{\ell}>0$, and the weight of λ is

$$
|\lambda|:=\sum_{i \geq 0} \lambda_{i}=\sum_{i \geq 0} i m_{i} .
$$

Lastly, denote by \mathcal{P}^{+}the set of partitions with positive weight. With the above in mind, Green-types are defined using the following total order:

Definition 31. Define a total order on $\mathbb{Z}^{+} \times \mathcal{P}^{+}$by the following three conditions:
(i) If $d>d^{\prime}$ then $(d, \lambda)>\left(d^{\prime}, \lambda^{\prime}\right)$,
(ii) If $d=d^{\prime}$ and $|\lambda|>\left|\lambda^{\prime}\right|$ then $(d, \lambda)>\left(d^{\prime}, \lambda^{\prime}\right)$, and
(iii) If $d=d^{\prime},|\lambda|=\left|\lambda^{\prime}\right|$ and $\lambda>\lambda^{\prime}$ (according to the lexicographic order) then $(d, \lambda)>\left(d^{\prime}, \lambda^{\prime}\right)$.

Definition 32. A Green-type is a finite subset of $\mathbb{Z}^{+} \times \mathcal{P}^{+}$denoted $\omega=\left(d_{1}, \lambda_{1}\right) \ldots\left(d_{s}, \lambda_{s}\right)$.
For Green-types, there is one important statistic

$$
|\omega|:=\sum_{i=1}^{s} d_{i}\left|\lambda_{i}\right|
$$

called the weight of ω. The Green-types of weight n are key to counting points on GL_{n}-character varieties. For example, the four types of weight 2 are

$$
\left(1,1^{2}\right), \quad\left(1,2^{1}\right), \quad\left(1,1^{1}\right)\left(1,1^{1}\right), \quad\left(2,1^{1}\right)
$$

and the eight types of weight 3 are

$$
\left(1,1^{3}\right), \quad\left(1,2^{1} 1^{1}\right), \quad\left(1,3^{1}\right), \quad\left(3,1^{1}\right)
$$

$$
\left(1,1^{2}\right)\left(1,1^{1}\right), \quad\left(1,2^{1}\right)\left(1,1^{1}\right), \quad\left(1,1^{1}\right)\left(1,1^{1}\right)\left(1,1^{1}\right), \quad\left(2,1^{1}\right)\left(1,1^{1}\right) .^{2}
$$

The relationship between Green-types and G-types is clear in light of two well-known facts:
Proposition 33. (i) The set $\operatorname{Uch}\left(\operatorname{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$ is in bijection with the set of partitions of n, and
(ii) Centralisers of semisimple elements of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ are of the form

$$
\mathrm{GL}_{n_{1}}\left(\mathbb{F}_{q^{d_{1}}}\right) \times \cdots \times \mathrm{GL}_{n_{s}}\left(\mathbb{F}_{q^{d_{s}}}\right)
$$

The former is explained in [GM20, §4.3] and the latter is explained in [DF18, Theorem 3.4.6].
Given a character $\chi \in \operatorname{Irr}\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)$, its Green-type is determined as follows. Use Lusztig's Jordan decomposition to associate to χ a pair $([s], \rho)$, where $[s]$ is a semisimple conjugacy class in $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$. Then its centraliser defines two lists of positive integers n_{1}, \ldots, n_{s} and d_{1}, \ldots, d_{s}, and the unipotent character ρ defines a list of partitions $\lambda_{1}, \ldots, \lambda_{s}$ with each λ_{i} a partition of n_{i}. Then $\omega=\left(d_{1}, \lambda_{1}\right) \ldots\left(d_{s}, \lambda_{s}\right)$ is a Green-type of weight n.

Note the above process, and hence Green-types, are defined for any $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$-character. However, in this thesis, we have only defined G-types for principal series $G\left(\mathbb{F}_{q}\right)$-characters. Therefore there are some Green-types whose analogous G-type is not defined. For instance, a cuspidal $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$-character has Green-type $\left(2,1^{1}\right)$ but we do not define its GL_{n}-type. We sketched a resolution to this in $\$ 4.1$.

We end this section with a table describing the translation between some Green-types and G-types:

Green-type	G-type
$\left(1,1^{1}\right) \ldots\left(1,1^{1}\right)$	$[T$, triv $]$
$\left(1,1^{n_{1}}\right) \ldots\left(1,1^{n_{r}}\right)$	$\left[\mathrm{GL}_{n_{1}} \times \cdots \times \mathrm{GL}_{n_{r}}\right.$, triv $]$
$\left(1, \lambda_{1}\right) \ldots\left(1, \lambda_{r}\right)$	$\left[\mathrm{GL}_{\left\|\lambda_{1}\right\|} \times \cdots \times \mathrm{GL}_{\left\|\lambda_{r}\right\|}, \lambda_{1} \otimes \cdots \otimes \lambda_{r}\right]$

Table 4.1: A translation between some Green-types and G-types. The tensor product of partitions $\lambda_{1} \otimes \cdots \otimes \lambda_{r}$ denotes the unipotent character of $\prod_{i} \mathrm{GL}_{n_{i}}$ labeled by the λ_{i}.

[^11]
4.4 Cambò-types

In this section, we explain relationship between G-types and the types seen in Cam17], which we call
Cambò-types. The G-types of this thesis do not generalise Cambò-types because the center of $\mathrm{Sp}_{2 n}$ is disconnected. Nevertheless, we still detail these types and explain their relationship to G-types. To this end, we recall some definitions and fix some notation.

Fix $G=\mathrm{Sp}_{2 n}$ and an odd prime power q. A character $\theta \in T\left(\mathbb{F}_{q}\right)^{\vee}$ is identified with an element of $\left(\mathbb{F}_{q}^{\times}\right)^{n} \simeq C_{q-1}^{n}$. Under this identification, we fix a collection of W-orbit representatives in $T\left(\mathbb{F}_{q}\right)^{\vee}$:

Proposition 34 (Proposition 2.4.14 of [Cam17]). The set

$$
\{(\underbrace{k_{1}, \ldots, k_{1}}_{\lambda_{1}}, \underbrace{k_{2}, \ldots, k_{2}}_{\lambda_{2}}, \ldots, \underbrace{k_{\ell}, \ldots, k_{\ell}}_{\lambda_{\ell}}, \underbrace{0, \ldots, 0}_{\alpha_{1}}, \underbrace{\frac{q-1}{2}, \ldots, \frac{q-1}{2}}_{\alpha_{\varepsilon}}): \begin{array}{c}
1 \leq k_{i} \leq \frac{q-3}{2}, \\
k_{i}>k_{j} \text { if } \lambda_{i}=\lambda_{j} \\
|\lambda|+\alpha_{1}+\alpha_{\varepsilon}=n
\end{array}\}
$$

is a complete collection of W-orbit representatives; i.e., every orbit has exactly one representative.
For instance, if $n=2$, then choosing a W-orbit amounts to choosing a pair of the form

$$
\underbrace{\underbrace{\left(\frac{q-1}{2}, \frac{q-1}{2}\right)}_{\alpha_{1}=0, \alpha_{\varepsilon}=2}, \underbrace{\left(0, \frac{q-1}{2}\right)}_{\alpha_{1}=\alpha_{\varepsilon}=1}, \underbrace{(0,0),}_{\alpha_{1}=2, \alpha_{\varepsilon}=0}}_{|\lambda|=0} \underbrace{\underbrace{\left(k_{1}, \frac{q-1}{2}\right)}_{\alpha_{1}=0, \alpha_{\varepsilon}=1}, \underbrace{\left(k_{1}, 0\right),}_{\alpha_{1}=1, \alpha_{\varepsilon}=0} \underbrace{\underbrace{\left(k_{1}, k_{1}\right),}_{\lambda=2^{1}} \underbrace{\left(k_{1}, k_{2}\right)}_{\lambda=1^{2}}}_{|\lambda|=2}, \underbrace{(0)}_{1}}_{|\lambda|=1}
$$

where $1 \leq k_{1}, k_{2} \leq \frac{q-3}{2}$ and $k_{1}>k_{2}$.
Definition 35. The Cambò-type of $\chi \in R_{T}^{G} \theta$ is the quadruple $\tau=\left(\lambda, \alpha_{1}, \alpha_{\varepsilon}, \beta\right)$ where $\left(\lambda, \alpha_{1}, \alpha_{\varepsilon}\right)$ is the W-orbit representative of θ in Proposition 34 and $\beta \in \operatorname{Irr}\left(W_{\theta}\right)$ corresponds to χ under the bijection of Proposition 26

The relation to G-types is clear; in both settings, a type keeps track of a principal series character $R_{T}^{G} \theta$ and one of its irreducible summands. As an example, the sixteen Cambò-types of Sp_{4} are below:

W-orbit rep. θ	W_{θ}	λ	α_{1}	α_{ε}	$\beta \in \operatorname{Irr}\left(W_{\theta}\right)$
$\left(\frac{q-1}{2}, \frac{q-1}{2}\right)$	D_{8}	0	0	2	$\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{2 D}$
$\left(0, \frac{q-1}{2}\right)$	1	0	1	1	triv
$(0,0)$	D_{8}	0	2	0	$\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{2 D}$
$\left(k_{1}, \frac{q-1}{2}\right)$	1	1^{1}	0	1	triv
$\left(k_{1}, 0\right)$	1	1^{1}	1	0	triv
$\left(k_{1}, k_{1}\right)$	S_{2}	2^{1}	0	0	triv, sgn
$\left(k_{1}, k_{2}\right)$	1	1^{2}	0	0	triv

Table 4.2: Cambò-types for Sp_{4}. The zero partition is denoted 0 . The four 1-dimensional characters of D_{8} are denoted by $\chi_{1}, \ldots, \chi_{4}$ and the 2 -dimensional irreducible character of D_{8} is denoted by $\chi_{2 D}$.

Chapter 5

Generic conjugacy classes

We develop a reductive notion of a generic choice of semisimple conjugacy classes, generalising the one seen in [HLRV11]. Our definition is inspired by the one seen in [Boa14] where a similar idea was used for complex reductive groups in order to conclude stability and irreducibility of certain representations Boa14, Theorem 9.3, Corollary 9.8] and allowed the author to study the so-called irregular Deligne-Simpson problem [Boa14, §9.4].

In our setting, the presence of a generic collection of conjugacy classes has four key advantages:
(i) The G / Z-action on the representation variety has finite étale stabilisers,
(ii) The character sums $S_{\tau}(q)$ defined in $\S 4.2$ greatly simplify $]^{1}$
(iii) The representation variety is smooth and equidimensional,
(iv) The character stack and the character variety have the same point-count,

We address the first advantage in $\$ 5.3$, the second advantage in $\$ 6.4$, and the third and fourth advantages in $\$ 7.3$. But first, we give the definition and examples of generic conjugacy classes in $\$ 5.1$ and then prove conjugacy classes can be chosen generically in the first place in $\$ 5.2$.

5.1 Definition and examples

Recall from $\$ 2.1$ the definition of generic conjugacy classes:

Definition 36. We say the tuple $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$ of semisimple conjugacy classes of G is generic if

$$
\prod_{i=1}^{n} X_{i} \notin[L, L]
$$

for all proper Levi subgroups L of G (not necessarily containing T) and for all $X_{i} \in C_{i} \cap L$.

[^12]Consider the semisimple element $S=\operatorname{diag}(a, b, c)$ in $G=\mathrm{GL}_{3}$ representing the conjugacy class C, where $a, b, c \in \mathbb{F}_{q}^{\times}$. In this section, we give necessary and sufficient conditions for C to be generic and for C to be strongly regular, allowing us to produce four examples:
(i) A strongly regular and generic conjugacy class,
(ii) A strongly regular but not generic conjugacy class,
(iii) A generic but not strongly regular conjugacy class, and
(iv) A conjugacy class which is neither strongly regular nor generic.

Since $S \in T$, we only need to consider the proper Levis of G containing T, which are

$$
L_{1}:=\left\{\left(\begin{array}{ll}
\mathrm{GL}_{2} & \\
& \mathrm{GL}_{1}
\end{array}\right)\right\}, \quad L_{2}:=\left\{\left(\begin{array}{ll}
\mathrm{GL}_{1} & \\
& \mathrm{GL}_{2}
\end{array}\right)\right\}, \quad T,
$$

with derived subgroups

$$
\left[L_{1}, L_{1}\right]=\left\{\left(\begin{array}{ll}
\mathrm{SL}_{2} & \\
& 1
\end{array}\right)\right\}, \quad\left[L_{2}, L_{2}\right]=\left\{\left(\begin{array}{ll}
1 & \\
& \mathrm{SL}_{2}
\end{array}\right)\right\}, \quad[T, T]=1
$$

Clearly, a necessary condition for C to be generic is $a b c=1$ because $\left[L_{1}, L_{1}\right],\left[L_{2}, L_{2}\right]$ and $[T, T]$ are contained in SL_{3}. Thus, we assume $c=(a b)^{-1}$, and observe three facts: $S \in\left[L_{1}, L_{1}\right]$ if and only if $a b=1, S \in\left[L_{2}, L_{2}\right]$ if and only if $a=1$ and $S \in[T, T]$ if and only if $a=b=1$. Thus, a necessary and sufficient condition for C to be generic is $S=\operatorname{diag}\left(a, b,(a b)^{-1}\right)$ with $a b \neq 1$ and $a \neq 1 \neq b$.

On the other hand, a necessary and sufficient condition for S to be strongly regular is $a \neq b \neq c \neq a$ because S being strongly regular means $C_{G}(S)=T$ Ste65]. If $c=(a b)^{-1}$ then $a \neq c$ if and only if $a^{2} b \neq 1$ and $b \neq c$ if and only if $a b^{2} \neq 1$.

Therefore, C is strongly regular and generic if and only if it is represented by

$$
S=\operatorname{diag}\left(a, b,(a b)^{-1}\right) \text { with } a \neq 1, b \neq 1, a b \neq 1, a^{2} b \neq 1 \text { and } a b^{2} \neq 1,
$$

C is strongly regular and but not generic if and only if it is represented by

$$
S=\operatorname{diag}(a, b, c) \text { with } a \neq b \neq c \neq a \text { and either } a b=1, b c=1, a=1 \text { or } c=1,
$$

C is generic but not strongly regular if and only if it is represented by

$$
S=\operatorname{diag}\left(a, b,(a b)^{-1}\right) \text { with } a b \neq 1, a \neq 1 \text { and either } a=b, a^{2} b=1 \text { or } a b^{2}=1,
$$

and C is neither strongly regular nor generic if and only if it is represented by

$$
S=\operatorname{diag}(a, b, c) \text { with either } a b=1, c=1, b c=1 \text { or } a=1 \text { and either } a=b, b=c \text { or } a=c .
$$

Since $G=\mathrm{GL}_{3}$, this can be compared with [HLRV11, Definition 2.1.1].
As another example, it is proven in Nam23, Lemma 53,Lemma 60] that if G equals SO_{5} or the semisimple group of adjoint type G_{2} then the conjugacy class of a strongly regular $S \in T$ is generic.

5.2 Conjugacy classes can be chosen generically

In this section, we show generic collections of strongly regular conjugacy classes exist. To this end, let \mathcal{L} be the set of proper Levi subgroups of G containing T. It is important to note \mathcal{L} is a finite set only depending on the root datum of G (c.f. §3.1). Moreover, let \underline{S} denote the tuple $\left(S_{1}, \ldots, S_{n}\right)$ in T^{n}. Recall from $\$ 3.4$ that W acts on $T\left(\mathbb{F}_{q}\right)$ by $w \cdot S:=\dot{w} S \dot{w}^{-1}$. Then for each tuple $\underline{w}:=\left(w_{1}, \ldots, w_{n}\right)$ in W^{n}, denote by $\underline{w} \cdot \underline{S}$ the product $\left(w_{1} \cdot S_{1}\right) \cdots\left(w_{n} \cdot S_{n}\right)$ in T.

Proposition 37. If $S_{1}, \ldots, S_{n} \in T$ satisfy

$$
\underline{w} \cdot \underline{S} \in[G, G] \backslash \bigcup_{L \in \mathcal{L}}[L, L]
$$

for all $\underline{w} \in W^{n}$ then the collection $\left(C_{1}, \ldots, C_{n}\right)$ is generic.
Note such S_{i} obviously satisfy $S_{1} \cdots S_{n} \in[G, G]$ (c.f. Assumption 11).

Proof. For want of a contradiction, assume the collection is not generic; i.e., $X_{1} \cdots X_{n} \in[L, L]$ for some proper Levi L of G containing T and for some $X_{i} \in C_{i} \cap L$. Write $X_{i}=g_{i} S_{i} g_{i}^{-1}$ for some $g_{i} \in G$. Then T and $g_{i} T g_{i}^{-1}$ are maximal tori inside of L so they are conjugate by some $l_{i} \in L$. That is, $l_{i} T l_{i}^{-1}=g_{i} T g_{i}^{-1}$, meaning $g_{i}^{-1} l_{i}$ normalises T. Thus, we can write $g_{i}=l_{i} \dot{w}_{i}$ for some $l_{i} \in L$ and $w_{i}=\dot{w}_{i} T \in W$; i.e., we can write $X_{i}=l_{i}\left(w_{i} \cdot S_{i}\right) l_{i}^{-1}$. Then

$$
\begin{aligned}
X_{1} \cdots X_{n} & =l_{1}\left(w_{1} \cdot S_{1}\right) l_{1}^{-1} \cdots l_{n}\left(w_{n} \cdot S_{n}\right) l_{n}^{-1} \\
& =\left[l_{1}, w_{1} \cdot S_{1}\right]\left(w_{1} \cdot S_{1}\right)\left[l_{2}, w_{2} \cdot S_{2}\right]\left(w_{2} \cdot S_{2}\right) \cdots\left[l_{n}, w_{n} \cdot S_{n}\right]\left(w_{n} \cdot S_{n}\right),
\end{aligned}
$$

where the second equality is obtained by inserting $\left(w_{i} \cdot S_{i}\right)^{-1}\left(w_{i} \cdot S_{i}\right)$ after $l_{i}\left(w_{i} \cdot S_{i}\right) l_{i}^{-1}$. Notice $w_{i} \cdot S_{i}$ lies in L since $X_{i}=l_{i}\left(w_{i} \cdot S_{i}\right) l_{i}^{-1}$ does, so the above expression is a product of elements in L and $[L, L]$. By assumption, this product lies in $[L, L]$, so the product $\underline{w} \cdot \underline{S}$ does too, which is a contradiction.

The following proposition guarentees such a collection of strongly regular S_{i} exist:
Proposition 38. There exist strongly regular $S_{1}, \ldots, S_{n} \in T$ satisfying the condition of Proposition 37
Proof. Let

$$
A:=\bigcap_{\underline{w} \in W^{n}}\left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[G, G]\right\} \quad \text { and } \quad B:=\bigcup_{L \in \mathcal{L} \underline{w} \in W^{n}}\left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[L, L]\right\} .
$$

Such S_{i} existing is the same as finding a tuple of strongly regular elements in the set

$$
\bigcap_{\underline{w} \in W^{n}}\left(\left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[G, G]\right\} \backslash \bigcup_{L \in \mathcal{L}}\left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[L, L]\right\}\right) .
$$

Basic set identities imply this set is equal to $A \backslash B$. Of course, $A \backslash B$ is non-empty if $\operatorname{dim}(A)>\operatorname{dim}(B)$ which we verify below.

Lemma 39. Let

$$
A:=\bigcap_{\underline{w} \in W^{n}}\left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[G, G]\right\} \quad \text { and } \quad B:=\bigcup_{L \in \mathcal{L} \underline{w} \in W^{n}}\left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[L, L]\right\} .
$$

Then $\operatorname{dim}(A)>\operatorname{dim}(B)$.
Proof. We claim

$$
\operatorname{dim}(A)=(n-1) \operatorname{dim}(T)+\operatorname{rank}[G, G]
$$

and

$$
\operatorname{dim}(B)=(n-1) \operatorname{dim}(T)+\max _{L \in \mathcal{L}} \operatorname{rank}[L, L] .
$$

The inequality $\operatorname{dim}(A)>\operatorname{dim}(B)$ follows since \mathcal{L} is finite and $\operatorname{rank}[G, G]>\operatorname{rank}[L, L]$ for all $L \in \mathcal{L}$ by Proposition 22. To compute $\operatorname{dim}(A)$ and $\operatorname{dim}(B)$, note

$$
\underline{w} \cdot \underline{S}=\left(\dot{w}_{1} S_{1} \dot{w}_{1}^{-1}\right) \cdots\left(\dot{w}_{n} S_{n} \dot{w}_{n}^{-1}\right)=\left[\dot{w}_{1}, S_{1}\right] S_{1}\left[\dot{w}_{2}, S_{2}\right] S_{2} \cdots\left[\dot{w}_{n}, S_{n}\right] S_{n}
$$

Therefore $\underline{w} \cdot \underline{S} \in[G, G]$ if and only if $S_{1} \cdots S_{n} \in[G, G]$ and $\underline{w} \cdot \underline{S} \in[L, L]$ if and only if $S_{1} \cdots S_{n} \in[L, L]$. Then we can simplify:

$$
\begin{aligned}
& \left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[G, G]\right\}=\left\{\underline{S} \in T^{n} \mid S_{1} \cdots S_{n} \in[G, G]\right\}, \\
& \left\{\underline{S} \in T^{n} \mid \underline{w} \cdot \underline{S} \in[L, L]\right\}=\left\{\underline{S} \in T^{n} \mid S_{1} \cdots S_{n} \in[L, L]\right\} .
\end{aligned}
$$

The result follows after proving the latter has dimension $(n-1) \operatorname{dim}(T)+\operatorname{rank}[L, L]$. To this end, fix $S_{1}, \ldots, S_{n} \in T$ and suppose $S_{1} \cdots S_{n} \in[L, L]$. Since $L=[L, L] Z(L)$, we decompose $S_{i}=a_{i} b_{i}$, where $a_{i} \in T \cap[L, L]$ and $b_{i} \in T \cap Z(L)=Z(L)$. Then

$$
S_{1} \cdots S_{n}=a_{1} \cdots a_{n} b_{1} \cdots b_{n}
$$

so $b_{1} \cdots b_{n}$ lies in $Z(L) \cap[L, L]$ since a_{1}, \ldots, a_{n} lies in $[L, L]$ and $S_{1} \cdots S_{n}$ lies in $[L, L]$.
Observe we are free to choose $a_{1}, \ldots, a_{n} \in T \cap[L, L]$ and $b_{1}, \ldots, b_{n-1} \in Z(L)$ as long as b_{n} lies in $(Z(L) \cap[L, L])\left(b_{1} \cdots b_{n-1}\right)^{-1}$. Therefore

$$
\operatorname{dim}\left(\left\{\underline{S} \in T^{n} \mid S_{1} \cdots S_{n} \in[L, L]\right\}\right)=\underbrace{n \operatorname{dim}(T \cap[L, L])}_{a_{1}, \ldots, a_{n}}+\underbrace{(n-1) \operatorname{dim}(Z(L))}_{b_{1}, \ldots, b_{n-1}}+\underbrace{\operatorname{dim}(Z(L) \cap[L, L])}_{b_{n}} .
$$

The last term is zero since $[L, L]$ is semisimple, and we can rewrite the first two terms as

$$
(n-1) \underbrace{(\operatorname{dim}(T \cap[L, L])+\operatorname{dim}(T \cap Z(L)))}_{\operatorname{dim}(T)}+\underbrace{\operatorname{dim}(T \cap[L, L])}_{\operatorname{rank}[L, L]} .
$$

We will see later in $\$ 6.4$ that our counting formula for the character variety does not actually depend on \mathcal{C}, provided the conjugacy classes are chosen generically.

5.3 Stabilisers are finite étale

In this section, we prove every point on the representation variety has finite étale stabilisers under the G / Z-action when conjugacy classes are chosen generically. To this end, fix a point on the representation variety, denoted $p=\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}, X_{1}, \ldots, X_{n}\right)$, and define the following sets:
(i) Let \mathcal{J} be the set of isolated pseudo-Levi subgroups of G containing T, and
(ii) Let \mathcal{Z} be the subgroup of G generated by the centres of the isolated pseudo-Levi subgroups in \mathcal{J}.

Note \mathcal{J} is finite, c.f. Proposition 17. A key observation is the following:
Lemma 40. The group z is an abelian group containing the centre Z of G, and Z / Z is finite.
Proof. Each isolated pseudo-Levi $L \in \mathcal{J}$ has a centre contained in T :

$$
Z(L)=C_{L}(L) \subseteq C_{G}(L) \subseteq C_{G}(T)=T
$$

Then $Z \subseteq T$ so Z is abelian. Next, G is isolated in G so \mathcal{Z} contains Z. Lastly, by Proposition 20, the quotient $Z(L) / Z$ is finite. Therefore Z / Z is generated by finitely many elements in the abelian group T / Z, and these elements have finite order, so Z / Z is finite.

The group z / Z is of use due to the following:
Proposition 41. The stabiliser $\operatorname{Stab}_{G / Z}(p)$ lies in $g Z g^{-1} / Z$ for some $g \in G$.
Proof. As subsets of G / Z, we have $\operatorname{Stab}_{G / Z}(p)=\operatorname{Stab}_{G}(p) / Z$. Fixing $h \in \operatorname{Stab}_{G}(p)$, it suffices to show $h \in g \not \approx g^{-1}$ for some $g \in G$. Since h stabilises p, we know $A_{1}, B_{1}, \ldots, A_{g}, B_{g}, X_{1}, \ldots, X_{n}$ all lie in $C_{G}(h)$ which implies the inclusion

$$
X_{1} \cdots X_{n}=\left(\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right]\right)^{-1} \in\left[C_{G}(h), C_{G}(h)\right] .
$$

Now $h \in C_{G}\left(X_{1}\right)=g T g^{-1}$ for some $g \in G$ so $C_{G}(h)$ is a pseudo-Levi subgroup of G containing $g T g^{-1}$. In other words, $g^{-1} C_{G}(h) g$ is a pseudo-Levi subgroup of G containing T. Furthermore, $C_{G}(h)$ must be isolated in G. If it were not then $C_{G}(h) \subset L$ for some proper Levi subgroup L of G, meaning $X_{1} \cdots X_{n} \in[L, L]$ which contradicts genericity of \mathcal{C}. Thus, $g^{-1} C_{G}(h) g$ is isolated too. It is straightforward to verify $h \in Z\left(C_{G}(h)\right)$ so $h \in g^{-1}$ Z g.

This establishes finiteness of the stabiliser $\operatorname{Stab}_{G / Z}(p)$, but we can say more:
Proposition 42. If $L \in \mathcal{J}$ then the finite group $Z(L) / Z$ is étale.
Proof. One checks by hand using Table 2.1 and Table 3.1 that if char $\left(\mathbb{F}_{q}\right)$ is very good for G then it is very good for every $L \in \mathcal{J}$. Therefore $\operatorname{char}\left(\mathbb{F}_{q}\right)$ is never a torsion prime for any $L \in \mathcal{J}$ (c.f. \|Ste75\|), so each $Z(L) / Z$ is of order prime to char $\left(\mathbb{F}_{q}\right)$ and therefore étale by Mil17, Corollary 11.31].

Corollary 43. The stabiliser $\operatorname{Stab}_{G / Z}(p)$ is finite étale.

Chapter 6

Formulas for the character $\operatorname{sum} S_{\tau}(q)$

Let $S_{1}, \ldots, S_{n} \in T$ be strongly regular elements representing conjugacy classes C_{1}, \ldots, C_{n} and let τ be a G-type. Recall from $\S 4.2$ the definition of the character sum

$$
S_{\tau}(q):=\sum_{\chi \in \mathscr{T}^{-1}(\tau)} \prod_{i=1}^{n} \chi\left(S_{i}\right) .
$$

We saw in $\S 4.2$ that determining $\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|$ amounts to determining $S_{\tau}(q)$. In this chapter, we give several formulas for $S_{\tau}(q)$, first without a generic choice of conjugacy classes, and then with one.

This chapter is the most technical chapter appearing in this thesis. In particular, in view of the definition of polynomial count in $\S 1.3$, it is not enough to conclude that $S_{\tau}(q)$ is a polynomial; we must prove the polynomial we obtain is stable under base change. The main point of this chapter is we obtain a simple and stable formula for $S_{\tau}(q)$ when conjugacy classes are chosen generically.

To elucidate the important ideas, we evaluate $S_{\tau}(q)$ in two steps: when there is only one puncture, and when there are multiple punctures. In both cases, we will see an auxiliary sum of $T\left(\mathbb{F}_{q}\right)$-character values appearing in our formulas for $S_{\tau}(q)$. Following methods developed in KNP23, we explain how to evaluate these auxiliary sums in $\$ 6.3$ and how they simplify in the generic setting in $\$ 6.4$.

6.1 A formula for $S_{\tau}(q)$: once-punctured case

Let $\tau=[L, \rho]$ be a G-type; recall that this means L is an endoscopy group of G containing T and ρ is a principal unipotent character of $L\left(\mathbb{F}_{q}\right)$. In this section, we explain the evaluation of $S_{\tau}(q)$ when there is one conjugacy class containing a strongly regular $S \in T$. In this case, $S_{\tau}(q)$ is given by

$$
S_{\tau}(q)=\sum_{\chi \in \mathscr{T}^{-1}(\tau)} \chi(S) .
$$

Define the auxiliary sum

$$
\alpha_{L, S}(q):=\sum_{\substack{\theta \in T\left(\mathbb{F}_{q}\right)^{\vee} \\ W_{\theta}=W(L)}} \theta(S) .
$$

This section is dedicated to proving the following formula for $S_{\tau}(q)$:

Proposition 44. Under the assumptions of this section, our formula for $S_{\tau}(q)$ is

$$
S_{\tau}(q)=\operatorname{dim}(\tilde{\rho}) \frac{|[L]|}{|W|} \sum_{w \in W} \alpha_{L, w \cdot S}(q),
$$

where $\tilde{\rho}$ is the $W(L)$-character associated to ρ and $[L]$ is the W-orbit of L.
Recall W acts on $T\left(\mathbb{F}_{q}\right)$ by $w \cdot S:=\dot{w} S \dot{w}^{-1}$, where \dot{w} is any lift of w (i.e., $w=\dot{w} T \in W$). The proof of Proposition 44 is centered around a result of Deligne-Lusztig which was used in $\$ 4.2$ to reformulate Frobenius' formula:

Proposition 45 (Corollary 7.6 of DL76|). If $\chi \in \operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)$ and $S \in T$ is strongly regular then

$$
\chi(S)=\sum_{\theta \in T\left(\mathbb{F}_{q}\right)^{\vee}}\left\langle\chi, R_{T}^{G} \theta\right\rangle \theta(S) .
$$

In particular, $\chi(S)=0$ unless χ is a principal series character.
We are ready to prove Proposition 44:
Proof. Recall from §3.4 that irreducible summands in $R_{T}^{G} \theta$ are in bijection with characters of W_{θ} with their multiplicities given by the corresponding W_{θ}-character's dimension. Given a character $\phi \in \operatorname{Irr}\left(W_{\theta}\right)$, denote the corresponding irreducible summand in $R_{T}^{G} \theta$ by $\chi_{\theta, \phi}$. Recall W acts on $T\left(\mathbb{F}_{q}\right)^{\vee}$ by $(w \cdot \theta)(S):=\theta(w \cdot S)$. Then using Proposition 45, we compute

$$
\chi_{\theta, \phi}(S)=\operatorname{dim}(\phi) \sum_{w \in W / W_{\theta}}(w \cdot \theta)(S)=\frac{\operatorname{dim}(\phi)}{\left|W_{\theta}\right|} \sum_{w \in W} \theta(w \cdot S) .
$$

If $\chi_{\theta, \phi}$ has type $\tau=[L, \rho]$ then the dual of \check{G}_{θ}, which we denote by G_{θ}, is an endoscopy group of G containing T. Moreover, G_{θ} lies in the W-orbit of L, and $\phi \in \operatorname{Irr}\left(W_{\theta}\right)$ is paired with $\rho \in \operatorname{Uch}\left(L\left(\mathbb{F}_{q}\right)\right)$ according to the bijections

$$
\operatorname{Irr}\left(W_{\theta}\right) \longleftrightarrow R_{\check{T}}^{\breve{G}_{\theta}} 1 \longleftrightarrow R_{T}^{L} 1 \subseteq \operatorname{Uch}\left(L\left(\mathbb{F}_{q}\right)\right)
$$

Denote by $\tilde{\rho}$ the character in $\operatorname{Irr}(W(L))$ corresponding to $\rho \in \operatorname{Uch}\left(L\left(\mathbb{F}_{q}\right)\right)$. Then

$$
S_{\tau}(q)=\sum_{\chi \in \mathscr{T}^{-1}(\tau)} \chi(S)=\sum_{\substack{[\theta] \in T\left(\mathbb{F}_{q}\right)^{\vee} / W \\ G_{\theta} \in[L]}} \chi_{\theta, \tilde{\rho}}(S) .
$$

Note $G_{\theta} \in[L]$ if and only if $W_{\theta} \in[W(L)]$ DL76, Theorem 5.13]. This means

$$
S_{\tau}(q)=\sum_{\substack{[\theta] \in T\left(\mathbb{F}_{q} \vee \vee / W \\ W_{\theta} \in[W(L)]\right.}} \chi_{\theta, \tilde{\rho}}(S) .
$$

We write this as a sum over all $\theta \in T\left(\mathbb{F}_{q}\right)^{\vee}$, rather than W-orbits $[\theta] \in T\left(\mathbb{F}_{q}\right)^{\vee} / W$. To do so, notice $\chi_{\theta, \tilde{\rho}}=\chi_{w, \theta, \tilde{\rho}}$ since $R_{T}^{G} \theta \simeq R_{T}^{G} w \cdot \theta$ by Proposition 25 . Therefore

$$
S_{\tau}(q)=\frac{|W(L)|}{|W|} \sum_{\substack{\theta \in T\left(\mathbb{F}_{q}\right) \vee \\ W_{\theta} \in[W(L)]}} \chi_{\theta, \tilde{\rho}}(S) .
$$

Lastly, we can replace the condition $W_{\theta} \in[W(L)]$ with the condition $W_{\theta}=W(L)$. We do so by averaging over the orbit size $|[W(L)]|=|W| /\left|N_{W}(W(L))\right|=|[L]|$ (c.f. |Car72, Lemma 34]), giving

$$
S_{\tau}(q)=|W(L)| \frac{|[L]|}{|W|} \sum_{\substack{\theta \in T\left(\mathbb{F}_{q}\right)^{v} \\ W_{\theta}=W(L)}} \chi_{\theta, \tilde{\rho}}(S) .
$$

We substitute in our formula for $\chi_{\theta, \tilde{\rho}}(S)$, giving

$$
S_{\tau}(q)=\operatorname{dim}(\tilde{\rho}) \frac{\mid L L] \mid}{|W|} \sum_{w \in W} \sum_{\substack{\theta \in T\left(\mathbb{F}_{q}\right)^{\vee} \\ W_{\theta}=W(L)}} \theta(w \cdot S)=\operatorname{dim}(\tilde{\rho}) \frac{\mid L L] \mid}{|W|} \sum_{w \in W} \alpha_{L, w \cdot S}(q) .
$$

6.2 A formula for $S_{\tau}(q)$: multi-punctured case

In this section, we explain the evaluation of $S_{\tau}(q)$ when there is a collection $\mathcal{C}=\left(C_{1}, \ldots, C_{n}\right)$ containing strongly regular $S_{i} \in T$. In this case, $S_{\tau}(q)$ is given by

$$
S_{\tau}(q)=\sum_{\chi \in \mathscr{T}^{-1}(\tau)} \chi\left(S_{1}\right) \cdots \chi\left(S_{n}\right)
$$

In this section, we prove the following formula for $S_{\tau}(q)$:
Proposition 46. Under the assumptions of this section, our formula for $S_{\tau}(q)$ is

$$
S_{\tau}(q)=\frac{\operatorname{dim}(\tilde{\rho})^{n}}{|W(L)|^{n-1}} \frac{|[L]|}{|W|} \sum_{\underline{w} \in W^{n}} \alpha_{L, \underline{w} \cdot \underline{S}}(q) .
$$

Proof. As in the once-punctured case, fix $\tau=[L, \rho]$ and recall $\chi \in \mathscr{T}^{-1}(\tau)$ if and only if $\chi=\chi_{\theta, \tilde{\rho}}$ for some $\theta \in T\left(\mathbb{F}_{q}\right)^{\vee}$ with $G_{\theta} \in[L]$. Therefore

$$
S_{\tau}(q)=\sum_{\substack{[\theta] \in \tilde{T}\left(\mathbb{F}_{q}\right) / W \\ G_{\theta} \in[L]}} \chi_{\theta, \tilde{\rho}}\left(S_{1}\right) \cdots \chi_{\theta, \tilde{\rho}}\left(S_{n}\right)=|W(L)| \frac{|[L]|}{|W|} \sum_{\substack{\theta \in \check{T}\left(\mathbb{F}_{q}\right) \\ W_{\theta}=W(L)}} \chi_{\theta, \tilde{\rho}}\left(S_{1}\right) \cdots \chi_{\theta, \tilde{\rho}}\left(S_{n}\right) .
$$

Let \underline{S} denote the tuple $\left(S_{1}, \ldots, S_{n}\right)$ in T^{n} and, for each $\underline{w}:=\left(w_{1}, \ldots, w_{n}\right) \in W^{n}$, let $\underline{w} \cdot \underline{S}$ denote the product $\left(w_{1} \cdot S_{1}\right) \cdots\left(w_{n} \cdot S_{n}\right)$ in T. Then, from the once-punctured case, we know

$$
\chi_{\theta, \tilde{\rho}}\left(S_{1}\right) \cdots \chi_{\theta, \tilde{\rho}}\left(S_{n}\right)=\frac{\operatorname{dim}(\tilde{\tilde{\rho}})^{n}}{\left|W_{\theta}\right|^{n}} \sum_{w_{1}, \ldots, w_{n} \in W} \theta(\underline{w} \cdot \underline{S}) .
$$

Plugging this into the expression for $S_{\tau}(q)$ above completes the proof.

6.3 A formula for the auxiliary sum $\alpha_{L, S}(q)$

Given an endoscopy group L of G containing T, we have seen in $\$ 6.1$ and $\$ 6.2$ that the auxiliary sum

$$
\alpha_{L, S}(q):=\sum_{\substack{\theta \in T\left(\mathbb{F}_{q}\right)^{\vee} \\ W_{\theta}=W(L)}} \theta(S)
$$

plays a key role in the determination of $S_{\tau}(q)$.
In this section, we give a method to evaluate $\alpha_{L, S}(q)$ following [KNP23, §5]. We emphasise a new idea appearing in this thesis: genericity of conjugacy classes yields a simple formula for $\alpha_{L, S}(q)$, written in terms of isolated endoscopy groups. We explain this simplification in $\$ 6.4$. In this section, we simplify the auxililary sum as much as we can without assuming genericity of conjugacy classes.

Our evaluation of $\alpha_{L, S}(q)$ centers around an application of Möbius inversion. Consider the partially ordered set P of endoscopy groups of G containing T, ordered by inclusion of their root systems, which by abuse of notation we write as inclusion of the endoscopy groups. Then P comes with Möbius function $\mu: P \times P \rightarrow \mathbb{Z}$. Define the sum

$$
\Delta_{L, S}(q):=\sum_{\substack{\theta \in T\left(\mathbb{F}_{q}\right)^{v} \\ W_{\theta} \supseteq W(L)}} \theta(S),
$$

so the Möbius inversion formula [Sta12, §3.7] yields

$$
\alpha_{L, S}(q)=\sum_{L^{\prime} \supseteq L} \mu\left(L, L^{\prime}\right) \Delta_{L^{\prime}, S}(q),
$$

where the sum is over all endoscopy groups L^{\prime} of G containing L.
We turn our attention to evaluating $\Delta_{L, S}(q)$, starting with an application of Pontryagin duality:
Proposition 47 (Lemma 26 of KNP23]). Let $f: A \rightarrow B$ be a surjective homomorphism of finite abelian groups and $f^{\vee}: B^{\vee} \rightarrow A^{\vee}$ be the Pontryagin dual $f^{\vee}(\varphi)=\varphi \circ f$. For each $a \in A$, we have

$$
\sum_{\theta \in f^{\vee}\left(B^{\vee}\right)} \theta(a)= \begin{cases}|B|, & \text { if } f(a)=1, \\ 0, & \text { otherwise }\end{cases}
$$

To alleviate notation, let $k=\mathbb{F}_{q}$. We apply this result to the (Pontryagin dual of the) natural map

$$
f_{L}: T(k) \rightarrow \frac{T(k)}{T(k) \cap[L(k), L(k)]} .
$$

Corollary 48 (Corollary 27 and Proposition 28 of KNP23]). We have

$$
\Delta_{L, S}(q)= \begin{cases}\left|\check{T}(k)^{W(L)}\right|, & \text { if } f_{L}(S)=1 \\ 0, & \text { otherwise }\end{cases}
$$

In particular, $\Delta_{L, S}(q)$ is zero unless $S \in[L(k), L(k)]$.
In light of the above, we must understand the fixed points $\check{T}(k)^{W(L)}$. To this end, let

$$
\pi_{0}^{L}:=\left|\pi_{0}\left(\check{T}^{W(L)}\right)(k)\right|
$$

where $\pi_{0}\left(\check{T}^{W(L)}\right)$ is the component group of $\check{T}^{W(L)}$. We recall precisely what this means now (c.f. KNP23, §4]). Recall the cocharacter lattice \check{X} admits an action of $W(L)$, and define the $W(L)$ coinvariants of X by

$$
\check{X}_{W(L)}:=\check{X} /\langle x-w \cdot x \mid x \in \check{X}, w \in W(L)\rangle,
$$

so that $\check{T}^{W(L)}=\operatorname{Spec} k\left[\check{X}_{W(L)}\right]$. Then $\check{X}_{W(L)}$ is an abelian group with torsion part $\operatorname{Tor}\left(\check{X}_{W(L)}\right)$, and the group of components is the k-group scheme $\pi_{0}\left(\check{T}^{W(L)}\right):=\operatorname{Spec} k\left[\operatorname{Tor}\left(\check{X}_{W(L)}\right)\right]$.

The following proposition explains why we introduced the group of components:

Proposition 49 ($\S 4$ of KNP23]). Let L be an endoscopy group of G containing T. Then
(i) $\check{T}(k)^{W(L)} \simeq Z(\check{L})$ as k-group schemes,
(ii) We have $\left|\check{T}(k)^{W(L)}\right|=\left|\pi_{0}\left(\check{T}^{W(L)}\right)(k)\right| \times\left|\left(\check{T}^{W(L)}\right)^{\circ}(k)\right|$, and
(iii) We have $\left|\left(\check{T}^{W(L)}\right)^{\circ}(k)\right|=\left|Z(\check{L})^{\circ}(k)\right|=(q-1)^{\operatorname{rank}(Z(L))}$.

Corollary 50. The sums $\Delta_{L, S}(q), \alpha_{L, S}(q)$ and $S_{\tau}(q)$ are polynomials in q.
As stated at the beginning of this chapter, we must ensure these polynomials are stable under base change. That is, if k^{\prime} / k is a finite extension, we must ensure the above polynomials do not change.

There are two things that may go wrong if we replace k with k^{\prime} :
(i) First, the integer $\left|\pi_{0}\left(\check{T}^{W(L)}\right)(k)\right|$ may change. This is because $\pi_{0}\left(\check{T}^{W(L)}\right)$ is an étale group scheme and the associated action of $\operatorname{Gal}(\bar{k} / k)$ may not be trivial; i.e., the Galois action may 'hide' k^{\prime}-points which appear after base change to k^{\prime}. Since $\pi_{0}\left(\check{T}^{W(L)}\right)$ is finite, this issue is resolved by choosing k large enough in the first place so that the Galois action is trivial.
(ii) Second, in view of Corollary 48, we may have $S \notin[L(k), L(k)]$ but $S \in\left[L\left(k^{\prime}\right), L\left(k^{\prime}\right)\right]$, which means the polynomial $\Delta_{L, S}(q)$ may change. This is because the inclusion $[L(k), L(k)] \hookrightarrow[L, L](k)$ may be strict (c.f. KNP23, §5.2.1]). Since there are only finitely many endoscopy groups of G containing T, we can resolve this issue by choosing k large enough in the first place so that this behavior does not occur.

These two observations are why we say 'potentially polynomial count' in the theorems in $\$ 2.1$. The main point of this section is, after choosing k large enough as explained above, we have a formula for $\alpha_{L, S}(q)$ which is stable under base change:

Corollary 51. Let L be an endoscopy group of G containing L. If $S \in T$ is strongly regular then

$$
\alpha_{L, S}(q)=\sum_{\substack{L^{\prime} \supset L \\ S \in\left[L^{\prime}(k), L^{\prime}(k)\right]}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}}\left|Z\left(L^{\prime}\right)^{\circ}(k)\right|,
$$

where the sum is over all endoscopy groups L^{\prime} of G containing L satisfying $S \in\left[L^{\prime}(k), L^{\prime}(k)\right]$.

6.4 A simple formula for $S_{\tau}(q)$: generic case

We have not yet used our generic assumption. We do so now, providing a major simplification of the auxiliary sum $\alpha_{L, S}(q)$ (and hence of $S_{\tau}(q)$) via the following proposition:

Proposition 52. Suppose L is an endoscopy group of G containing T.
(i) An element of G lies in $[L, L]$ if and only if it lies in $\left[L\left(k^{\prime}\right), L\left(k^{\prime}\right)\right]$ for some finite extension k^{\prime} of k,
(ii) A generic element S lies in $[L, L]$ if and only if L is isolated with respect to G, and
(iii) If L is isolated with respect to G then $\left|Z(L)^{\circ}(k)\right|=|Z(k)|$.

Proof. (i) If $x \in\left[L\left(k^{\prime}\right), L\left(k^{\prime}\right)\right]$ for some finite extension k^{\prime} / k then $x \in[L, L]\left(k^{\prime}\right) \cap G(k)$ so $x \in[L, L](k)$. On the other hand, if $x \in[L, L](k)$ then $x \in[L, L](\bar{k})$ so $x \in[L(\bar{k}), L(\bar{k})]$. In other words, there exists $a_{1}, b_{1}, \ldots, a_{r}, b_{r} \in L(\bar{k})$ such that $x=\left[a_{1}, b_{1}\right] \ldots\left[a_{r}, b_{r}\right]$. However, $L(\bar{k})$ equals the union of all $L\left(k^{\prime}\right)$ as k^{\prime} ranges over all finite extensions of k, proving the result.
(ii) If L is not isolated with respect to G then there exists a proper Levi M of G containing L. Since S is generic, we must have $S \notin[M, M]$ so $S \notin[L, L]$. On the other hand, if L is isolated with respect to G then Proposition 21 says $T \cap[L, L]$ and $T \cap[G, G]$ are equal. The latter contains S so $S \in[L, L]$.
(iii) This follows from Proposition 20 and connectedness of Z.

Corollary 53. If $S \in T$ is strongly regular and generic then

$$
\alpha_{L, S}(q)=\left|Z\left(\mathbb{F}_{q}\right)\right| \sum_{\substack{L^{\prime} \supseteq L \\ L^{\prime} \text { isolated }}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}},
$$

where the sum is over all isolated endoscopy groups L^{\prime} of G containing L.
Corollary 54. If $\mathrm{C}=\left(C_{1}, \ldots, C_{n}\right)$ is a generic collection of strongly regular conjugacy classes then

$$
S_{\tau}(q)=\left|Z\left(\mathbb{F}_{q}\right)\right| \operatorname{dim}(\tilde{\rho})^{n}|[L]|\left(\frac{|W|}{|W(L)|}\right)^{n-1} \sum_{\substack{L^{\prime} \supset L \\ L^{\prime} \text { isolated }}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}}
$$

Proof. This follows from Proposition 46.
Corollary 55. If S is generic then $S_{\tau}(q)$ is independent of S.
We conclude this section by using our formula to compute two important examples of $S_{\tau}(q)$:
(i) If τ is the G-type $[G, \operatorname{triv}]$ then $\operatorname{dim}(\tilde{\rho})=1,|[L]|=1$ and $|W(L)|=|W|$. Moreover, the only endoscopy group of G containing G is G, so we only need to compute $\mu(G, G)=1$ and

$$
\pi_{0}^{G}=\left|\pi_{0}\left(\check{T}^{W}\right)\right|=\mid \pi_{0}(Z(\check{G}) \mid .
$$

Therefore

$$
S_{\tau}(q)=\mid \pi_{0}\left(Z(\check{G})| | Z\left(\mathbb{F}_{q}\right) \mid .\right.
$$

(ii) We saw in $\$ 4.3$ that choosing a GL_{n}-type $\tau=[L, \rho]$ is the same as choosing a tuple of partitions $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ with $n=\left|\lambda_{1}\right|+\cdots+\left|\lambda_{r}\right|$; the endoscopy L is of the form $\mathrm{GL}_{\left|\lambda_{1}\right|} \times \cdots \times \mathrm{GL}_{\left|\lambda_{r}\right|}$ and the unipotent character ρ is of the form $\lambda_{1} \otimes \cdots \otimes \lambda_{r}$. Then
(a) $\operatorname{dim}(\tilde{\rho})=\operatorname{dim}\left(\tilde{\lambda_{1}}\right) \times \cdots \times \operatorname{dim}\left(\tilde{\lambda}_{r}\right)$ and $\operatorname{dim}\left(\tilde{\lambda}_{i}\right)$ is the dimension of the $S_{\left|\lambda_{i}\right|}$-character labelled by λ_{i}, given by the well-known hook length formula Mac95, I, 7.]

$$
\operatorname{dim}\left(\tilde{\lambda}_{i}\right)=\frac{\left|\lambda_{i}\right|!}{\prod_{h \in H\left(\lambda_{i}\right)} h}
$$

where $H\left(\lambda_{i}\right)$ is the multi-set of hook lengths of the partition λ_{i},
(b) The Weyl group $W(L)$ is isomorphic to $S_{\left|\lambda_{1}\right|} \times \cdots \times S_{\left|\lambda_{r}\right|}$,
(c) The orbit size $|[L]|$ equals

$$
\frac{|W|}{\left|N_{W}(W(L))\right|}=\frac{n!}{\left|N_{S_{n}}\left(S_{\left|\lambda_{1}\right|} \times \cdots \times S_{\left|\lambda_{r}\right|}\right)\right|}=\frac{n!}{\prod_{i} m_{i}!(i!)^{m_{i}}},
$$

where m_{i} equals the number of λ_{j} 's equal to i DH93, p. 1545],
(d) The only isolated endoscopy group of GL_{n} containing T is GL_{n} itself,
(e) $\mu\left(L, \mathrm{GL}_{n}\right)=(-1)^{r-1}(r-1)$! DH93, Theorem 1], and
(f) The centre of GL_{n} is connected so $\pi_{0}^{\mathrm{GL}_{n}}=1$.

Therefore

$$
S_{\tau}(q)=(-1)^{r-1}(r-1)!\frac{\left|\lambda_{1}\right|!\times \cdots \times\left|\lambda_{r}\right|!}{\prod_{i} m_{i}!(i!)^{m_{i}}}\left(\frac{n!}{\prod_{h \in H\left(\lambda_{1}\right) \cup \cdots \cup H\left(\lambda_{r}\right)} h}\right)^{n}(q-1)
$$

This is the regular case of HLRV11, Theorem 4.3.1 (1)].

Chapter 7

Proofs of main results

Recall the character variety is the GIT quotient

$$
\mathbf{X}:=\mathbf{R} / /(G / Z)=\mathbf{R} / / G
$$

and the character stack is the quotient stack

$$
\mathfrak{X}:=[\mathbf{R} /(G / Z)] .
$$

In this chapter, we prove our main results about \mathfrak{X} and \mathbf{X} when \mathcal{C} is a collection of strongly regular conjugacy classes (which are sometimes chosen generically). Specifically, we:
(i) Prove \mathfrak{X} is potentially rational count and calculate its counting function in Theorem 56 ,
(ii) Calculate the dimension and number of components of \mathfrak{X} in Theorem 58 ,
(iii) Prove \mathfrak{X} and \mathbf{X} have the same point-count when conjugacy classes are generic in Theorem 59 ,
(iv) Give the simplified counting polynomial of \mathfrak{X} and \mathbf{X} in Theorem61,
(v) Calculate the dimension and number of components of \mathbf{X} in Theorem 62 ,
(vi) Calculate the Euler characteristic of \mathbf{X} in Theorem 63, Theorem 64 and Theorem 65, and
(vii) Prove the counting polynomial $\|\mathbf{X}\|$ is palindromic in Theorem 67 .

7.1 Counting functions for \mathfrak{X}

In this section, we prove Theorem 2, restated here in detail:
Theorem 56. The character stack \mathfrak{X} is potentially rational count with counting function

$$
\|\mathfrak{X}\|(q)=\frac{\|Z\|(q)}{\|T\|(q)^{n}} \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

with notation given below. Moreover, if $g \geq 1$ then \mathfrak{X} is potentially polynomial count.

In the above theorem, we have:
(i) $\|Z\|(q)=\left|Z\left(\mathbb{F}_{q}\right)\right|=(q-1)^{\operatorname{dim}(Z)}$ is the counting polynomial of the centre of G,
(ii) $\|T\|(q)=\left|T\left(\mathbb{F}_{q}\right)\right|=(q-1)^{\operatorname{dim}(T)}$ is the counting polynomial of the maximal split torus T,
(iii) $\mathcal{T}(G)$ is the set of types of G, i.e., the W-orbits of pairs (L, ρ) where L is an endoscopy group of G containing T and ρ is a principal unipotent character of $L\left(\mathbb{F}_{q}\right)$,
(iv) For a type $\tau=[L, \rho]$, we have

$$
\|\tau\|(q):=q^{\left|\Phi(G)^{+}\right|-\left|\Phi(L)^{+}\right|} \frac{\|L\|(q)}{\|\rho\|(q)}
$$

and

$$
S_{\tau}(q)=\frac{\operatorname{dim}(\tilde{\rho})^{n}}{|W(L)|^{n-1}} \frac{|[L]|}{|W|} \sum_{\underline{w} \in W^{n}} \alpha_{L, \underline{w} \cdot \underline{S}}(q),
$$

where:
(a) $\Phi(G)^{+}$and $\Phi(L)^{+}$are the positive roots of G and L, respectively,
(b) $\|L\|(q)=\left|L\left(\mathbb{F}_{q}\right)\right|$ is the counting polynomial of L,
(c) $\|\rho\|(q)=\rho(1)$ is the degree polynomial of ρ,
(d) $W(L)$ is the Weyl group of L,
(e) $\tilde{\rho}$ is the character of $W(L)$ corresponding to the principal unipotent character ρ of $L\left(\mathbb{F}_{q}\right)$,
(f) $[L]$ is the W-orbit of L arising from the W-action on Φ,
(g) $\underline{w} \cdot \underline{S}:=\left(w_{1} \cdot S_{1}\right) \cdots\left(w_{n} \cdot S_{n}\right)$ with $w \cdot S:=\dot{w} S \dot{w}^{-1}$,
(h) $\alpha_{L, S}(q)=\sum_{\substack{L^{\prime} \supset L \\ S \in\left[L^{\prime}(\bar{k}), L^{\prime}(k)\right]}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}}\left|Z\left(L^{\prime}\right)^{\circ}(k)\right|$,
(i) μ is the Möbius function on the poset of endoscopy groups of G containing T, and
(j) $\pi_{0}^{L^{\prime}}=\left|\pi_{0}\left(\check{T}^{W\left(L^{\prime}\right)}\right)(k)\right|$ is the number of components of the finite étale k-group scheme $\check{T}^{W\left(L^{\prime}\right)}$.

Proof. Proposition 30 and Proposition 46 imply

$$
\left|\mathfrak{X}\left(\mathbb{F}_{q}\right)\right|=\frac{\|Z\|(q)}{\|T\|(q)^{n}} \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

where $S_{\tau}(q)$ is given by the formula above. The functions $\|Z\|(q),\|T\|(q),\|\tau\|(q)$ and $S_{\tau}(q)$ are polynomials, and we explained in $\$ 6.3$ why this formula becomes stable under base change after passing to a large enough field extension, so \mathfrak{X} is potentially rational count. Moreover, if $g \geq 1$ then $\|T\|(q)^{n}$ divides $\|\tau\|(q)^{2 g-2+n}$ GM20, Remark 2.3.27] so \mathfrak{X} is potentially polynomial count.

7.2 Dimension and components of \mathfrak{X}

In this section, we determine the degree and leading coefficient of $\|\mathfrak{X}\|(q)$. Ultimately, we need the following result. Suppose $S \in T$ and L and L^{\prime} are endoscopy groups of G containing T. Then define

$$
Q_{L, L^{\prime}, S}(q):=P_{W(L)}(q)^{2 g-2+n} \Delta_{L^{\prime}, S}(q)
$$

where $P_{W(L)}(q)$ is the Poincaré polynomial of $W(L)$ and we recall from $\$ 6.3$ that

$$
\Delta_{L, S}(q):=\sum_{\substack{\theta \in T\left(\mathbb{F}_{q} \vee \\ W_{\theta} \supseteq W(L)\right.}} \theta(S) .
$$

Proposition 57 (Proposition 33 of KNP23]). Suppose $2 g-2+n \geq 2$. Then $\operatorname{deg} Q_{L, L^{\prime}, S}$ is maximal if and only if $L=L^{\prime}=G$.

Later in $\$ 7.5$, by choosing conjugacy classes generically, we lower this to $2 g-2+n \geq 1$ in accordance with Assumption 4. We now prove Theorem 5, restated here:

Theorem 58. If $2 g-2+n \geq 2$ then the character stack is non-empty of dimension

$$
\operatorname{dim}(\mathfrak{X})=(2 g-2+n) \operatorname{dim}(G)+2 \operatorname{dim}(Z)-n \operatorname{rank}(G)
$$

with number of components equal to

$$
\left|\pi_{0}(\mathfrak{X})\right|=\left|\pi_{0}(Z(\check{G}))\right|
$$

where $Z(\check{G})$ is the centre of the Langlands dual group \check{G}.
Proof. We claim only $\tau=[G$, triv $]$ contributes to the top degree of $\|\mathfrak{X}\|$. Assuming the claim, calculating the degree and leading coefficient of

$$
\frac{\|Z\|(q)}{\|T\|(q)^{n}}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

when $\tau=[G$, triv $]$ is straightforward and completes the proof. To prove the claim, fix a G-type $\tau=[L, \rho]$. In view of $\$ 7.1$, the degree of $S_{\tau}(q)$ does not depend on ρ. Moreover, from $\$ 3.3$, we have

$$
\operatorname{deg}\|\tau\|=\left|\Phi(G)^{+}\right|+\operatorname{dim}(T)+\operatorname{deg} P_{W(L)}-\operatorname{deg}\|\rho\|
$$

which is maximised if and only if $\rho=$ triv [GM20, Proposition 4.5.9]. This means the only types contributing to the top degree of $\|\mathfrak{X}\|(q)$ are of the form $\tau=[L$, triv $]$. Assuming $\tau=[L$, triv $]$, we have

$$
\|\tau\|(q)=q^{\left|\Phi(G)^{+}\right|}(q-1)^{\operatorname{dim}(T)} P_{W(L)}(q) .
$$

From $\$ 7.1$ and $\$ 6.3$, we have

$$
S_{\tau}(q)=\sum_{\underline{w} \in W^{n}} \sum_{L^{\prime} \supseteq L} C\left(G, L, L^{\prime}\right) \Delta_{L^{\prime}, \underline{w} \cdot \underline{S}}(q)
$$

where the sum is over all endoscopy groups L^{\prime} of G containing L and $C\left(G, L, L^{\prime}\right)$ is some rational number dependent only on the root datum of G, L and L^{\prime} and not on q. Therefore

$$
\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)=F(q) \sum_{\underline{w} \in W^{n}} \sum_{L^{\prime} \supseteq L} C\left(G, L, L^{\prime}\right) \underbrace{P_{W(L)}(q)^{2 g-2+n} \Delta_{L^{\prime}, \underline{w} \cdot \underline{S}}(q)}_{Q_{L, L^{\prime}, \underline{w} \cdot \underline{s}}(q)}
$$

where $F(q)$ is independent of L. Applying Proposition 57 completes the proof of the claim.

7.3 \mathfrak{X} and X have the same point-count

In this section, we prove Theorem 7 , restated here:
Theorem 59. If \mathcal{C} is generic then:
(i) G / Z acts on \mathbf{R} with finite étale stabilisers,
(ii) \mathbf{R} is smooth and equidimensional,
(iii) \mathfrak{X} is a smooth Deligne-Mumford stack,
(iv) \mathbf{X} is the coarse moduli space for \mathfrak{X}, and
(v) \mathfrak{X} and \mathbf{X} have the same number of points over finite fields.

Proof. (i) This is Corollary 43 .

(ii) This follows from an application of the Regular Value Theorem and is already known when the G / Z-action is free KNP23. Theorem 1]. In our setting, the G / Z-action is not necessarily free, but the aforementioned proof still works with one modification. The key difference is G / Z acting freely on \mathbf{R} implies $\operatorname{Stab}_{G}(p)=Z$ for each $p \in \mathbf{R}$ (because $\left.\operatorname{Stab}_{G / Z}(p)=\operatorname{Stab}_{G}(p) / Z\right)$ and this is used in KNP23, §2.1.7] to conclude $\operatorname{Lie}\left(\operatorname{Stab}_{G}(p)\right)=\operatorname{Lie}(Z)=0$. In our setting, we have $\operatorname{Lie}\left(\operatorname{Stab}_{G}(p) / Z\right)=\operatorname{Lie}\left(\operatorname{Stab}_{G / Z}(p)\right)=0$ by Corollary 43 .
(iii) In view of [Ols16, Remark 8.3.4], Corollary 43 implies \mathfrak{X} is a Deligne-Mumford stack. Since \mathbf{R} and G / Z are smooth, the smoothness of \mathfrak{X} follows, c.f. [Ols16, §8.2].
(iv) To identify the coarse moduli space, we show all orbits of the G / Z-action on \mathbf{R} are closed (this implies, for every algebraically closed field K, the map $\mathfrak{X}(K) \rightarrow \mathbf{X}(K)$ is bijective, c.f. Ols16, Definition 11.1.1]). Observe the action map

$$
G / Z \times \mathbf{R} \rightarrow \mathbf{R} \times \mathbf{R}, \quad(g Z, p) \mapsto(g \cdot p, p)
$$

is proper by MFK94, Proposition 0.8] and Corollary 43. Proper maps are closed so the image of $G / Z \times\{x\}$ is closed. This image is $\operatorname{Orb}_{G / Z}(x) \times\{x\}$ so the orbit $\operatorname{Orb}_{G / Z}(x)$ is closed.
(v) Let $\mathfrak{I}:=\mathfrak{X} \times_{\mathfrak{X} \times \mathfrak{X}} \mathfrak{X}$ be the inertia stack associated to \mathfrak{X}. A key result attributed to Serre Beh91, Corollary 2.3.4] says if the morphism $\mathfrak{I} \rightarrow \mathfrak{X}$ is étale then $\left|\mathfrak{X}\left(\mathbb{F}_{q}\right)\right|=\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|$. This means it suffices to show the fibres of $\mathfrak{I} \rightarrow \mathfrak{X}$ are étale (c.f. Noo04, §2]), and these are the stabiliser group schemes $\operatorname{Stab}_{G / Z}(p)$ where $p \in \mathbf{R}$, which were shown to be étale in Corollary 43 .

Corollary 60. If \mathcal{C} is generic then

$$
\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=\left|\mathfrak{X}\left(\mathbb{F}_{q}\right)\right|=\frac{\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|}{\left|(G / Z)\left(\mathbb{F}_{q}\right)\right|}=\frac{\|Z\|(q)}{\|T\|(q)^{n}} \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q) .
$$

7.4 Counting polynomials for X

In this section, we prove Theorem 8 , restated here in detail:
Theorem 61. If \mathcal{C} is generic then \mathbf{X} is potentially polynomial count with counting polynomial

$$
\|\mathbf{X}\|(q)=\frac{\|Z\|(q)}{\|T\|(q)^{n}} \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

Above, the notation is the same as Theorem 56, except

$$
S_{\tau}(q)=\left|Z\left(\mathbb{F}_{q}\right)\right| \operatorname{dim}(\tilde{\rho})^{n}|[L]|\left(\frac{|W|}{|W(L)|}\right)^{n-1} v(L)
$$

where

$$
v(L):=\sum_{\substack{L^{\prime} \supseteq L \\ L^{\prime} \text { isolated }}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}}
$$

is a sum over all isolated endoscopy groups L^{\prime} of G containing L.
Proof. Corollary 54, Theorem 56 and Corollary 60 imply

$$
\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=\frac{\|Z\|(q)}{\|T\|(q)^{n}} \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

The functions $\|Z\|(q),\|T\|(q),\|\tau\|(q)$ and $S_{\tau}(q)$ are polynomials, and we explained in $\S 6.3$ why this formula becomes stable under base change after passing to a large enough field extension, so \mathbf{X} is potentially polynomial count.

7.5 Dimension and components of X

In this section, we prove Theorem 9 , restated here:
Theorem 62. If \mathcal{C} is generic then the character variety is non-empty of dimension

$$
\operatorname{dim}(\mathbf{X})=(2 g-2+n) \operatorname{dim}(G)+2 \operatorname{dim}(Z)-n \operatorname{rank}(G)
$$

with number of components equal to

$$
\left|\pi_{0}(\mathbf{X})\right|=\left|\pi_{0}(Z(\check{G}))\right|,
$$

where $Z(\check{G})$ is the centre of the Langlands dual group \check{G}.
Proof. We claim only $\tau=[G$, triv $]$ contributes to the top degree of $\|\mathbf{X}\|$. The degree of $S_{\tau}(q)$ is always $\operatorname{dim}(Z)$ by Corollary 54, so we just maximise deg $\|\tau\|$. From $\$ 3.3$, this equals

$$
\operatorname{deg}\|\tau\|=\left|\Phi(G)^{+}\right|-\left|\Phi(L)^{+}\right|+\operatorname{dim}(L)-\operatorname{deg}\|\rho\|=\left|\Phi(G)^{+}\right|+\operatorname{dim}(T)+\operatorname{deg} P_{W(L)}-\operatorname{deg}\|\rho\|
$$

and is maximised if and only if $\tau=[G$, triv $]$ GM20, Proposition 4.5.9]. The degree and leading coefficient of $\|\mathbf{X}\|$ follows, noting that if $\tau=[G$, triv $]$ then the leading coefficient of

$$
\frac{\|Z\|(q)}{\|T\|(q)^{n}}\|\tau\|(q)^{2 g-2+n} S_{\tau}(q)
$$

is $\pi_{0}^{G}=\left|\pi_{0}(Z(\check{G}))\right|$.

7.6 Euler characteristic

In this section, we prove Theorem 10 which concerns the Euler characteristic of \mathbf{X}.
Theorem 63. Suppose \mathcal{C} is generic. If either $g>1$, or $g>0$ and $\operatorname{dim}(Z)>0$, then $\chi(\mathbf{X})=0$.
Proof. We rewrite

$$
\|\mathbf{X}\|(q)=\|Z\|(q) \sum_{\tau \in \mathcal{T}(G)}\|\tau\|(q)^{2 g-2}\left(\frac{\|\tau\|(q)}{\|T\|(q)}\right)^{n} S_{\tau}(q)
$$

We saw in the proof of Theorem 56 that $\|T\|(q)$ divides $\|\tau\|(q)$ so $\|Z\|(q),\|\tau\|(q)^{2 g-2}, \frac{\|\tau\|(q)}{\|T\|(q)}$ and $S_{\tau}(q)$ are all polynomials as long as $g \geq 1$. If $g>1$ then $2 g-2>0$ and one checks $\|\tau\|(1)^{2 g-2}=0$ so $\chi(\mathbf{X})=\|\mathbf{X}\|(1)=0$. Similarly, if $g=1$ and $\operatorname{dim}(Z)>0$ then $\|Z\|(1)=0$ so $\chi(\mathbf{X})=\|\mathbf{X}\|(1)=0$.

Theorem 64. Suppose \mathcal{C} is generic. If $g=1$ and $\operatorname{dim}(Z)=0$ then

$$
\chi(\mathbf{X})=|W|^{n-1} \sum_{L}|W(L)||\operatorname{Irr}(W(L))| v(L),
$$

where the sum is over all endoscopy groups L of G containing T, and

$$
v(L):=\sum_{\substack{G \supset L^{\prime}>L \\ L^{\prime} \text { isolated }}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}} .
$$

In the definition of $v(L)$, the sum is over all isolated endoscopy groups of G containing L.
Proof. Expanding the sum over τ and rearranging yields

$$
\|\mathbf{X}\|(q)=\sum_{[L]} q^{\left|\Phi(G)^{+}\right|-\left|\Phi(L)^{+}\right|}\left(\frac{\|L\|(q)}{\|T\|(q)}\right)^{n}|[L]|\left(\frac{|W|}{|W(L)|}\right)^{n-1} v(L) \sum_{\rho}\left(\frac{\operatorname{dim}(\tilde{\rho})}{\|\rho\|(q)}\right)^{n}
$$

where the first sum is over all endoscopy groups L of G containing T and the second sum is over all principal unipotent characters of $L\left(\mathbb{F}_{q}\right)$. In view of $\$ 3.3$, we have

$$
\frac{\|L\|(q)}{\|T\|(q)}=q^{\left|\Phi(L)^{+}\right|} P_{W(L)}(q)
$$

which equals $|W(L)|$ when evaluated at $q=1$. We also have $\|\rho\|(1)=\operatorname{dim}(\tilde{\rho})$ GM20, p. 231] so $\sum_{\rho}\left(\frac{\operatorname{dim}(\tilde{\rho})}{\|\rho\|(q)}\right)^{n}$ evaluated at $q=1$ equals $|\operatorname{Irr}(W(L))|$. Therefore

$$
\|\mathbf{X}\|(1)=\sum_{[L]}|W(L)|^{n}|[L]|\left(\frac{|W|}{|W(L)|}\right)^{n-1} v(L)|\operatorname{Irr}(W(L))| .
$$

Theorem 65. Suppose \mathcal{C} is generic. If $g=0$ and $n \geq 3$ then

$$
\chi(\mathbf{X})=\left.\frac{1}{(2 r)!} \frac{d^{2 r}}{d q^{2 r}}\right|_{q=1} \xi(q)
$$

where $2 r:=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)$ is twice the semisimple rank of G, and

$$
\left.\xi(q):=q^{\left|\Phi(G)^{+}\right|(n-2)} \sum_{L} v(L)\left(\frac{|W|}{|W(L)|}\right)^{n-1} \sum_{\rho} \operatorname{dim}(\tilde{\rho})^{n}\left(\frac{P_{W(L)}(q)}{\|\rho\|(q)}\right)^{n-2} \cdot 1\right]
$$

In the definition of $\boldsymbol{\xi}(q)$, the first sum is over all endoscopy groups L of G containing T, and the second sum is over all principal unipotent characters of $L\left(\mathbb{F}_{q}\right)$.

[^13]Proof. Suppose $g=0$ and $n \geq 3$. Expanding the sum over τ and rearranging yields

$$
\|\mathbf{X}\|(q)(q-1)^{2 r}=\xi(q) .
$$

Differentiating $2 r$ times and evaluating at $q=1$ yields the Euler characteristic.
Some examples of $\chi(\mathbf{X})$ are provided in \S B.5 and \S B.6. It would be interesting to understand the function $\xi(q)$ as it governs the Euler characteristic of character varieties associated to punctured spheres. We do not know any interpretation of this function.

7.7 Palindromicity

In this section, we prove Theorem 11 which says $\|\mathbf{X}\|(q)$ is palindromic. Before doing so, we must relate the types of χ and its Alvis-Curtis dual $D_{G}(\chi)$:

Proposition 66. Suppose $\chi \in R_{T}^{G} \theta$ has type $\tau=[L, \rho]$ and ρ is matched with $\phi \in \operatorname{Irr}(W(L))$ according to Proposition 26 Then $D_{G}(\chi)$ has type $\left[L, D_{L}(\rho)\right]$ where $D_{L}(\rho)$ is matched with $\phi \otimes \operatorname{sgn} \in \operatorname{Irr}(W(L))$. Hence, there is an involution

$$
D_{G}: \mathcal{T}(G) \rightarrow \mathcal{T}(G), \quad[L, \rho] \mapsto\left[L, D_{L}(\rho)\right] .
$$

Proof. This is a consequence of Proposition 27. In particular, if χ is a summand in $R_{T}^{G} \theta$ then $D_{G}(\chi)$ is too. Therefore, if χ has type $[L, \rho]$ then $D_{G}(\chi)$ has type $\left[L, \rho^{\prime}\right]$ where the unipotent character ρ^{\prime}. Specifically, if ρ is matched with ϕ according to Proposition 26 then ρ^{\prime} is matched with $\phi \otimes \operatorname{sgn}$. This is an involution since $\operatorname{sgn} \otimes \operatorname{sgn}=$ triv.

We are now ready to prove Theorem 11, restated here:
Theorem 67. If \mathcal{C} is generic then $\|\mathbf{X}\|$ is a palindromic polynomial; i.e.,

$$
\|\mathbf{X}\|(q)=q^{\operatorname{dim}(\mathbf{X})}\|\mathbf{X}\|(1 / q)
$$

Proof. We have $\operatorname{dim}(\mathbf{X})=(2 g-2+n) \operatorname{dim}(G)-2 \operatorname{dim}(Z)+n \operatorname{rank}(G)$ so we just need to understand $\|\mathbf{X}\|(1 / q)$. Using formulas from $\$ 3.3$, the following identities are straightforward:

$$
\begin{aligned}
\|Z\|(1 / q) & =(-1)^{\operatorname{dim}(Z)} q^{-\operatorname{dim}(Z)}\|Z\|(q) \\
\|T\|(1 / q) & =(-1)^{\operatorname{dim}(T)} q^{-\operatorname{dim}(T)}\|T\|(q), \\
\|L\|(1 / q) & =(-1)^{\operatorname{dim}(T)} q^{-\operatorname{dim}(T)-3\left|\Phi(L)^{+}\right|}\|L\|(q) .
\end{aligned}
$$

Next, by Proposition 27 and Proposition 66, if $\tau=[L, \rho]$ is a G-type then $D_{G}(\tau)=\left[L, D_{L}(\rho)\right]$ and

$$
\|\tau\|(1 / q)=(-1)^{\operatorname{dim}(T)} q^{-\operatorname{dim}(T)-|\Phi(G)|}\left\|D_{G}(\tau)\right\|(q)
$$

Lastly, recall from Corollary 54 the formula

$$
S_{\tau}(q)=\left|Z\left(\mathbb{F}_{q}\right)\right| \operatorname{dim}(\tilde{\rho})^{n}|[L]|\left(\frac{|W|}{|W(L)|}\right)^{n-1} v(L) .
$$

Then $S_{D_{G}(\tau)}(q)=S_{\tau}(q)$ since $\operatorname{dim}(\tilde{\rho} \otimes \operatorname{sgn})=\operatorname{dim}(\tilde{\rho})$. Therefore

$$
S_{\tau}(1 / q)=(-1)^{\operatorname{dim}(Z)} q^{-\operatorname{dim}(Z)} S_{D_{G}(\tau)}(q)
$$

allowing us to compute

$$
\|\mathbf{X}\|(1 / q)=q^{-\operatorname{dim}(\mathbf{X})} \frac{\|Z\|(q)}{\|T\|(q)^{n}} \sum_{\tau \in \mathcal{T}(G)}\left\|D_{G}(\tau)\right\|(q)^{2 g-2+n} S_{D_{G}(\tau)}(q) .
$$

The result follows since $D_{G}: \mathcal{T}(G) \rightarrow \mathcal{T}(G)$ is an involution and therefore a bijection.

7.8 Consistency checks

In this section, we prove $\|\mathbf{X}\|(q)=0$ when $(g, n)=(0,1)$ or $(0,2)$ using our formula for $\|\mathbf{X}\|(q)$ in Theorem 61. This follows from the following observation:

Lemma 68. Suppose L is an endoscopy group of G containing T and recall the sum

$$
v(L):=\sum_{\substack{G \supset L^{\prime} \supseteq L \\ L^{\prime} \text { isolated }}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}}
$$

over all isolated endoscopy groups L^{\prime} of G containing L. Then the sum

$$
\sum_{G \supseteq L \supseteq T} v(L)
$$

over all endoscopy groups L of G containing T is equal to zero.
Proof. We rearrange

$$
\sum_{G \supseteq L \supseteq T} v(L)=\sum_{\substack{G \supseteq L^{\prime} \supseteq L \\ L^{\prime} \text { isolated }}} \pi_{0}^{L^{\prime}} \sum_{T \subseteq L \subseteq L^{\prime}} \mu\left(L, L^{\prime}\right) .
$$

But the sum

$$
\sum_{T \subseteq L \subseteq L^{\prime}} \mu\left(L, L^{\prime}\right)
$$

over all endoscopy groups L of G containing T and contained in L^{\prime} is always zero. This is because sums of the form $\sum_{\substack{x \in P \\ x \leq m}} \mu(x, m)$ where m is the maximal element of a finite poset P are always zero. In our case, P is the poset of all endoscopy groups of G containing T and contained in L^{\prime}.

Proposition 69. If $(g, n)=(0,1)$ or $(0,2)$ then $\|\mathbf{X}\|(q)=0$.
Proof. If $(g, n)=(0,1)$ then

$$
\|\mathbf{X}\|(q)=\frac{\|Z\|(q)}{\|T\|(q)} \sum_{\tau \in \mathcal{T}(G)} \frac{S_{\tau}(q)}{\|\tau\|(q)}
$$

Expanding the sum over τ gives

$$
\|\mathbf{X}\|(q)=\frac{\|Z\|(q)^{2}}{\|T\|(q) q^{\left|\Phi(G)^{+}\right|}} \sum_{L} \frac{q^{\left|\Phi(L)^{+}\right|} v(L)}{\|L\|(q)} \sum_{\rho} \operatorname{dim}(\tilde{\rho})\|\rho\|(q)
$$

where the first sum is over all endoscopy groups L of G containing T, and the second sum is over principal unipotent characters ρ of $L\left(\mathbb{F}_{q}\right)$. By Proposition 26, the expression $\sum_{\rho} \operatorname{dim}(\tilde{\rho})\|\rho\|(q)$ is equal to $\operatorname{dim}\left(R_{T}^{L} 1\right)$ which equals

$$
P_{W(L)}(q)=\frac{\|L\|(q)}{q^{\left|\Phi(L)^{+}\right|}\|T\|(q)} .
$$

Therefore

$$
\|\mathbf{X}\|(q)=\frac{\|Z\|(q)^{2}}{\|T\|(q)^{2} q^{\left|\Phi(G)^{+}\right|}} \sum_{L} v(L)=0
$$

by Lemma 68. The case $(g, n)=(0,2)$ is handled the same way but the expression $\sum_{\rho} \operatorname{dim}(\tilde{\rho})\|\rho\|(q)$ is replaced with $\sum_{\rho} \operatorname{dim}(\tilde{\rho})^{2}$ which equals $|W(L)|$ since it is the sum of the squared dimensions of the irreducible characters of a finite group $\left[\mathrm{EGH}^{+} 11\right.$, Theorem 4.1.1].

Appendix A

Counting polynomials in Julia

The expression for the counting polynomial $\|\mathbf{X}\|(q)$ is in terms of well-known representation-theoretic data. There are several computer algebra systems which calculate this data, allowing one to quickly and automatically compute $\|\mathbf{X}\|(q)$. These systems include the Chevie system in GAP and Julia (GHL ${ }^{+}$96] and the Magma computer algebra system BCP97].

In this appendix, we detail how one can calculate the table given in \S B.4 using the Chevie package in Julia. From this table, one can compute the counting polynomial $\|\mathbf{X}\|(q)$. We compute this data in a series of steps. A script containing all of the steps can be found at
https://github.com/baileywhitbread/MPhil-Thesis-Julia-Script.

A. 1 Calculating pseudo-Levi subgroups

Once the Chevie package is loaded, we can calculate some familiar objects from representation theory:
1 using Chevie;
$\mathrm{G}=\operatorname{coxgroup}(: G, 2)$;
$3 \mathrm{uc}=$ UnipotentCharacters (G);
The command UnipotentCharacters returns a dictionary containing important representation-theoretic data such as unipotent character degrees. Rather than calculate the endoscopy groups of G containing T, we work in the dual \check{G} and calculate the pseudo-Levi subgroups of \check{G} containing \check{T}. This is because we have access to a convenient function sscentralizer_reps which returns a list of representatives of centralisers of semisimple elements. This is used together with the commands reflection_subgroup and orbits:

1 G_dual $=\operatorname{coxgroup}(: G, 2)$;
pseudo_levi_orbit_reps = reflection_subgroup.(Ref (G_dual), sscentralizer_reps (G_dual));
3 pseudo_levi_orbits = orbits (G_dual, pseudo_levi_orbit_reps);

We then collect all of the pseudo-Levi subgroups into a single list, and at the same time we create another list of the isolated-pseudo Levi subgroups:
1 pseudo_levis = [];
isolated_pseudo_levis = [];
3 for pseudo_levi_orbit in pseudo_levi_orbits for pseudo_levi in pseudo_levi_orbit

5 append! (pseudo_levis,[pseudo_levi])
if length(gens (pseudo_levi)) == length(gens(G)) \# Isolated iff no. of simples equal append!(isolated_pseudo_levis, [pseudo_levi])
end
9 end end

A. 2 Calculating $v(L)$

$$
v(L)=\sum_{L^{\prime}} \mu\left(L, L^{\prime}\right) \pi_{0}^{L^{\prime}}
$$

where the sum is over all isolated pseudo-Levi subgroups L^{\prime} of \check{G} containing L, μ is the Möbius function on the poset of pseudo-Levi subgroups of \check{G} containing $\check{T}, \pi_{0}^{L^{\prime}}=\left|\pi_{0}\left(T^{W\left(L^{\prime}\right)}\right)\right|$ is the number of components of $T^{W\left(L^{\prime}\right)}$. In view of this formula, we define a few helper functions.

First, we need a way of checking whether pseudo-Levi subgroups contain each other, so that we can implement the Möbius function. Given a pseudoLevi subgroup L the function inclusion returns a list of its roots. For instance, inclusion(G) returns $[1,2, \ldots, 12]$, representing the twelve roots of G_{2}. We pair this with Julia's built-in function issubset:

```
    function subset(L,M)
2 return issubset(inclusion(L),inclusion(M))
    end
4
    function equal(L,M)
6
    return inclusion(L) == inclusion(M)
end
```

Next, we need to compute π_{0}^{L}. Luckily, the function algebraic_center (L) returns a dictionary of information about $Z(L)$ and the key.$A Z$ returns the component group of $Z(L)$. Thus, we define:

```
1 function piO(L)
    return length(algebraic_center(L).AZ)
```

3 end

We are now ready to implement the Möbius function:
1 function mob(A,B, poset)
if equal (A,B)
return 1
elseif subset (A, B) mob_value $=0$ for element in poset
if subset (A,element) \&\& subset (element, B) \&\& !equal (element, B) mob_value $+=$ mob(A, element, poset)

9

11

13
else
nd
return (-1)*mob_value error("First argument is not a subset of the second argument")
end
15 end
Finally, we can implement the $v(L)$ function:
1 function nu(L)
nu_value $=0$
3 for isolated_pseudo_levi in isolated_pseudo_levis if subset(L, isolated_pseudo_levi) nu_value += mob(L, isolated_pseudo_levi, pseudo_levis)*pi0(isolated_pseudo_levi) end

7
end
return nu_value
9 end

A. 3 Calculating G-types and their associated data


```
l for pseudo_levi in pseudo_levi_orbit_reps
    pseudo_levi_order_poly = PermRoot.generic_order(pseudo_levi,Pol(:q));
    pseudo_levi_positive_root_size = Int(length(roots(pseudo_levi))/2);
    pseudo_levi_orbit_size = length(orbit(G_dual,pseudo_levi));
    pseudo_levi_weyl_size = length(pseudo_levi);
    pseudo_levi_nu = nu(pseudo_levi);
    pseudo_levi_uc = UnipotentCharacters(pseudo_levi);
    pseudo_levi_uc_names = charnames(pseudo_levi_uc,limit=true);
    pseudo_levi_uc_degree_polys = degrees(pseudo_levi_uc);
    for i in 1:length(pseudo_levi_uc)
        if Int(pseudo_levi_uc_degree_polys[i](1)) != 0 # Check unipotent char. is principal
                type_row = Array{Any}(nothing, 1,0);
                global type_row = hcat(type_row,[(pseudo_levi,pseudo_levi_uc_names [i])]);
                global type_row = hcat(type_row, [pseudo_levi_positive_root_size]);
                global type_row = hcat(type_row,[pseudo_levi_uc_degree_polys[i]]);
                global type_row = hcat(type_row,[pseudo_levi_order_poly]);
                global type_row = hcat(type_row, [Int(pseudo_levi_uc_degree_polys[i](1))]);
                global type_row = hcat(type_row,[pseudo_levi_weyl_size]);
                global type_row = hcat(type_row,[pseudo_levi_orbit_size]);
                global type_row = hcat(type_row,[pseudo_levi_nu]);
                global type_data = vcat(type_data,type_row);
            end
```


Appendix B

Examples

In this appendix, we give several examples of counting polynomials and Euler characteristics of character varieties.

B. $1\|\mathbf{X}\|$ when $G=\mathrm{GL}_{2}$

The following table contains the data required to compute $\|\mathbf{X}\|(q)$ using Theorem 61 ;

$\tau=[L, \rho]$	$\left\|\Phi(L)^{+}\right\|$	$\left\|L\left(\mathbb{F}_{q}\right)\right\|$	$\rho(1)$	$\tilde{\rho}(1)$	$\|W(L)\|$	$\|[L]\|$	π_{0}^{L}	$v(L)$	$\\|\tau\\|(q)$	$S_{\tau}(q)$
$\left[\mathrm{GL}_{2}, 2^{1}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	1	1	2	1	1	1	$q \Phi_{1}^{2} \Phi_{2}$	Φ_{1}
$\left[\mathrm{GL}_{2}, 1^{2}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	q	1	2	1	1	1	$\Phi_{1}^{2} \Phi_{2}$	Φ_{1}
$[T$, triv $]$	0	Φ_{1}^{2}	1	1	1	1		-1	$q \Phi_{1}^{2}$	$-2^{n-1} \Phi_{1}$

Table B.1: The three GL_{2}-types. The unipotent characters in type A_{r-1} are labelled by partitions; in particular, r^{1} is the trivial character and 1^{r} is the Steinberg character. The $i^{\text {th }}$ cyclotomic polynomial is denoted Φ_{i}; in particular, $\Phi_{1}=q-1$ and $\Phi_{2}=q+1$. We only need to compute π_{0}^{L} when L is isolated.

From the table, we have

$$
\begin{aligned}
\|\mathbf{X}\|(q) & =\frac{1}{\Phi_{1}^{2 n-2}}[\underbrace{\left(q \Phi_{1}^{2} \Phi_{2}\right)^{2 g-2+n} \Phi_{1}}_{\left[\mathrm{GL}_{2}, 2^{1}\right]}+\underbrace{\left(\Phi_{1}^{2} \Phi_{2}\right)^{2 g-2+n} \Phi_{1}}_{\left[\mathrm{GL}_{2}, 1^{2}\right]}+\underbrace{-2^{n-1}\left(q \Phi_{1}^{2}\right)^{2 g-2+n} \Phi_{1}}_{\left[T, 1^{1}\right]}] \\
& =\underbrace{q^{2 g-2+n} \Phi_{1}^{4 g-3} \Phi_{2}^{2 g-2+n}}_{\left[\mathrm{GL}_{2}, 2^{1}\right]}+\underbrace{\Phi_{1}^{4 g-3} \Phi_{2}^{2 g-2+n}}_{\left[\mathrm{GL}_{2}, 1^{2}\right]}+\underbrace{-2^{n-1} q^{2 g-2+n} \Phi_{1}^{4 g-3}}_{\left[T, 1^{1}\right]} .
\end{aligned}
$$

B. $2\|\mathbf{X}\|$ when $G=\mathrm{GL}_{3}$

The following table contains the data required to compute $\|\mathbf{X}\|(q)$ using Theorem 61,

$\tau=[L, \rho]$	$\left\|\Phi(L)^{+}\right\|$	$\left\|L\left(\mathbb{F}_{q}\right)\right\|$	$\rho(1)$	$\tilde{\rho}(1)$	$\|W(L)\|$	$\|[L]\|$	π_{0}^{L}	$v(L)$	$\\|\tau\\|(q)$	$S_{\tau}(q)$
$\left[\mathrm{GL}_{3}, 3^{1}\right]$	3	$q^{3} \Phi_{1}^{3} \Phi_{2} \Phi_{3}$	1	1	6	1	1	1	$q^{3} \Phi_{1}^{3} \Phi_{2} \Phi_{3}$	Φ_{1}
$\left[\mathrm{GL}_{3}, 2^{1} 1^{1}\right]$	3	$q^{3} \Phi_{1}^{3} \Phi_{2} \Phi_{3}$	$q \Phi_{2}$	2	6	1	1	1	$q^{2} \Phi_{1}^{3} \Phi_{3}$	$2^{n} \Phi_{1}$
$\left[\mathrm{GL}_{3}, 1^{3}\right]$	3	$q^{3} \Phi_{1}^{3} \Phi_{2} \Phi_{3}$	q^{3}	1	6	1	1	1	$\Phi_{1}^{3} \Phi_{2} \Phi_{3}$	Φ_{1}
$\left[G_{A_{1}}, 2^{1}\right]$	1	$q \Phi_{1}^{3} \Phi_{2}$	1	1	2	3		-1	$q^{3} \Phi_{1}^{3} \Phi_{2}$	$-3^{n} \Phi_{1}$
$\left[G_{A_{1}}, 1^{2}\right]$	1	$q \Phi_{1}^{3} \Phi_{2}$	q	1	2	3		-1	$q^{2} \Phi_{1}^{3} \Phi_{2}$	$-3^{n} \Phi_{1}$
$[T$, triv $]$	0	Φ_{1}^{3}	1	1	1	1		2	$q^{3} \Phi_{1}^{3}$	$\frac{1}{3} 6^{n} \Phi_{1}$

Table B.2: The six GL_{3}-types. The unipotent characters in type A_{r-1} are labelled by partitions; in particular, r^{1} is the trivial character and 1^{r} is the Steinberg character. The $i^{\text {th }}$ cyclotomic polynomial is denoted Φ_{i}; in particular, $\Phi_{1}=q-1, \Phi_{2}=q+1$ and $\Phi_{3}=q^{2}+q+1$. We only need to compute π_{0}^{L} when L is isolated.

From the table, we have

$$
\begin{aligned}
& \|\mathbf{X}\|(q)=\frac{1}{\Phi_{1}^{3 n-3}}[\underbrace{\left(q^{3} \Phi_{1}^{3} \Phi_{2} \Phi_{3}\right)^{2 g-2+n} \Phi_{1}}_{\left[\mathrm{GL}_{3}, 3^{1}\right]}+\underbrace{2^{n}\left(q^{2} \Phi_{1}^{3} \Phi_{3}\right)^{2 g-2+n} \Phi_{1}}_{\left[\mathrm{GL}_{3}, 2^{2} 1^{1}\right]}+\underbrace{\left(\Phi_{1}^{3} \Phi_{2} \Phi_{3}\right)^{2 g-2+n} \Phi_{1}}_{\left[\mathrm{GL}_{3}, 1^{3}\right]} \\
& +\underbrace{-3^{n}\left(q^{3} \Phi_{1}^{3} \Phi_{2}\right)^{2 g-2+n} \Phi_{1}}_{\left[G_{A_{1}}, 2^{1}\right]}+\underbrace{-3^{n}\left(q^{2} \Phi_{1}^{3} \Phi_{2}\right)^{2 g-2+n} \Phi_{1}}_{\left[G_{A_{1}}, 1^{2}\right]}+\underbrace{\frac{1}{3} 6^{n}\left(q^{3} \Phi_{1}^{3}\right)^{2 g-2+n} \Phi_{1}}_{[T, \text {,triv }]}] \\
& =\underbrace{q^{6 g-6+3 n} \Phi_{1}^{6 g-3} \Phi_{2}^{2 g-2+n} \Phi_{3}^{2 g-2+n}}_{\left[\mathrm{GL}_{3}, 3^{1}\right]}+\underbrace{2^{n} q^{4 g-4+2 n} \Phi_{1}^{6 g-3} \Phi_{3}^{2 g-2+n}}_{\left[\mathrm{GL}_{3}, 2^{2} 1^{1}\right]}+\underbrace{\Phi_{1}^{6 g-3} \Phi_{2}^{2 g-2+n} \Phi_{3}^{2 g-2+n}}_{\left[\mathrm{GL}_{3}, 1^{3}\right]} \\
& +\underbrace{-3^{n} q^{6 g-6+3 n} \Phi_{1}^{6 g-3} \Phi_{2}^{2 g-2+n}}_{\left[G_{A_{1}}, 2^{1}\right]}+\underbrace{-3^{n} q^{4 g-4+2 n} \Phi_{1}^{6 g-3} \Phi_{2}^{2 g-2+n}}_{\left[G_{A_{1}}, 1^{2}\right]}+\underbrace{\frac{1}{3} 6^{n} q^{6 g-6+3 n} \Phi_{1}^{6 g-3}}_{[T, \text { triv }]}
\end{aligned}
$$

B. $3\|\mathbf{X}\|$ when $G=\mathrm{SO}_{5}$

The following table contains the data required to compute $\|\mathbf{X}\|(q)$ using Theorem 61

$\tau=[L, \rho]$	$\left\|\Phi(L)^{+}\right\|$	$\left\|L\left(\mathbb{F}_{q}\right)\right\|$	$\rho(1)$	$\tilde{\rho}(1)$	$\|W(L)\|$	\|[L]	π_{0}^{L}	$v(L)$	$\\|\tau\\|(q)$	$S_{\tau}(q)$
[$\left.\mathrm{SO}_{5},\left({ }^{2}\right)\right]$	4	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	1	1	8	1	2	2	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	2
$\left[\mathrm{SO}_{5},\binom{01}{2}\right]$	4	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	$\frac{1}{2} q \Phi_{4}$	1	8	1	2	2	$2 q^{3} \Phi_{1}^{2} \Phi_{2}^{2}$	2
$\left[\mathrm{SO}_{5},\left(\begin{array}{c}1 \\ 1 \\ 0\end{array}\right)\right]$	4	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	$\frac{1}{2} q \Phi_{4}$	1	8	1	2	2	$2 q^{3} \Phi_{1}^{2} \Phi_{2}^{2}$	2
[$\left.\mathrm{SO}_{5},\left(\begin{array}{c}0 \\ 1 \\ 1\end{array}\right)\right]$	4	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	$\frac{1}{2} q \Phi_{2}^{2}$	2	8	1	2	2	$2 q^{3} \Phi_{1}^{2} \Phi_{4}$	2^{n+1}
$\left[\mathrm{SO}_{5},\left(\begin{array}{cc}0 & 1 \\ 1 & 2\end{array}\right)\right]$	4	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	q^{4}	1	8	1	2	2	$\Phi_{1}^{2} \Phi_{2}^{2} \Phi_{4}$	2
$\left[G_{A_{1} \times A_{1}}, 2^{1} \otimes 2^{1}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	1	1	4	1	4	2	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2}$	2^{n}
$\left[G_{A_{1} \times A_{1}}, 2^{1} \otimes 1^{2}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	q	1	4	1	4	2	$q^{3} \Phi_{1}^{2} \Phi_{2}^{2}$	2^{n}
$\left[G_{A_{1} \times A_{1}}, 1^{2} \otimes 2^{1}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	q	1	4	1	4	2	$q^{3} \Phi_{1}^{2} \Phi_{2}^{2}$	2^{n}
$\left[G_{A_{1} \times A_{1}}, 1^{2} \otimes 1^{2}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	q^{2}	1	4	1	4	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	2^{n}
$\left[G_{A_{1}}, 2^{1}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	1	1	2	2		-4	$q^{4} \Phi_{1}^{2} \Phi_{2}$	$-2 \cdot 4^{n}$
$\left[G_{A_{1}}, 1^{2}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	q	1	2	2		-4	$q^{3} \Phi_{1}^{2} \Phi_{2}$	$-2 \cdot 4^{n}$
$\left[G_{A_{1}^{\prime}}, 2^{1}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	1	1	2	2		-2	$q^{4} \Phi_{1}^{2} \Phi_{2}$	-4^{n}
$\left[G_{A_{1}^{\prime}}, 1^{2}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	q	1	2	2		-2	$q^{3} \Phi_{1}^{2} \Phi_{2}$	-4^{n}
[T, triv]	0	Φ_{1}^{2}	1	1	1	1		8	$q^{4} \Phi_{1}^{2}$	8^{n}

Table B.3: The fourteen principal SO_{5}-types. The principal unipotent characters of $\mathrm{SO}_{5}\left(\mathbb{F}_{q}\right)$ are labelled using Lusztig's symbols [GM20, §4.4]; in particular, $\left(\begin{array}{l}2\end{array}\right)$ is the trivial character and $\left(\begin{array}{cc}0 & 1 \\ 1 & 2\end{array}\right)$ is the Steinberg character. The unipotent characters in type A_{r-1} are labelled by partitions; in particular, r^{1} is the trivial character and 1^{r} is the Steinberg character. We distinguish the copies of A_{1} with longer and shorter roots by A_{1} and A_{1}^{\prime}, respectively. The $i^{\text {th }}$ cyclotomic polynomial is denoted Φ_{i}; in particular, $\Phi_{1}=q-1, \Phi_{2}=q+1$ and $\Phi_{4}=q^{2}+1$. We only need to compute π_{0}^{L} when L is isolated.

B. $4\|X\|$ when $G=G_{2}$

The following table contains the data required to compute $\|\mathbf{X}\|(q)$ using Theorem 61

$\tau=[L, \rho]$	$\left\|\Phi(L)^{+}\right\|$	$\left\|L\left(\mathbb{F}_{q}\right)\right\|$	$\rho(1)$	$\tilde{\rho}(1)$	$\|W(L)\|$	$\mid L L] \mid$	π_{0}^{L}	$v(L)$	$\\|\tau\\|(q)$	$S_{\tau}(q)$
$\left[G_{2}, \phi_{1,0}\right]$	6	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	1	1	12	1	1	1	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	1
$\left[G_{2}, \phi_{1,3}^{\prime}\right]$	6	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	$\frac{1}{3} q \Phi_{3} \Phi_{6}$	1	12	1	1	1	$3 q^{5} \Phi_{1}^{2} \Phi_{2}^{2}$	1
$\left[G_{2}, \phi_{1,3}^{\prime \prime}\right]$	6	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	$\frac{1}{3} q \Phi_{3} \Phi_{6}$	1	12	1	1	1	$3 q^{5} \Phi_{1}^{2} \Phi_{2}^{2}$	1
$\left[G_{2}, \phi_{2,1}\right]$	6	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	$\frac{1}{6} q \Phi_{2}^{2} \Phi_{3}$	2	12	1	1	1	$6 q^{5} \Phi_{1}^{2} \Phi_{6}$	2^{n}
$\left[G_{2}, \phi_{2,2}\right]$	6	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	$\frac{1}{2} q \Phi_{2}^{2} \Phi_{6}$	2	12	1	1	1	$2 q^{5} \Phi_{1}^{2} \Phi_{3}$	2^{n}
$\left[G_{2}, \phi_{1,6}\right]$	6	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	q^{6}	1	12	1	1	1	$\Phi_{1}^{2} \Phi_{2}^{2} \Phi_{3} \Phi_{6}$	1
$\left[G_{A_{2}}, 3^{1}\right]$	3	$q^{3} \Phi_{1}^{2} \Phi_{2} \Phi_{3}$	1	1	6	1	3	2	$q^{6} \Phi_{1}^{2} \Phi_{2} \Phi_{3}$	2^{n}
$\left[G_{A_{2}}, 2^{1} 1^{1}\right]$	3	$q^{3} \Phi_{1}^{2} \Phi_{2} \Phi_{3}$	$q \Phi_{2}$	2	6	1	3	2	$q^{5} \Phi_{1}^{2} \Phi_{3}$	4^{n}
$\left[G_{A_{2}}, 1^{3}\right]$	3	$q^{3} \Phi_{1}^{2} \Phi_{2} \Phi_{3}$	q^{3}	1	6	1	3	2	$q^{3} \Phi_{1}^{2} \Phi_{2} \Phi_{3}$	2^{n}
$\left[G_{A_{1} \times A_{1}^{\prime}}, 2^{1} \otimes 2^{1}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	1	1	4	3	2	1	$q^{6} \Phi_{1}^{2} \Phi_{2}^{2}$	3^{n}
$\left[G_{A_{1} \times A_{1}^{\prime}}, 2^{1} \otimes 1^{2}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	q	1	4	3	2	1	$q^{5} \Phi_{1}^{2} \Phi_{2}^{2}$	3^{n}
$\left[G_{A_{1} \times A_{1}^{\prime}}, 1^{2} \otimes 2^{1}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	q	1	4	3	2	1	$q^{5} \Phi_{1}^{2} \Phi_{2}^{2}$	3^{n}
$\left[G_{A_{1} \times A_{1}^{\prime}}, 1^{2} \otimes 1^{2}\right]$	2	$q^{2} \Phi_{1}^{2} \Phi_{2}^{2}$	q^{2}	1	4	3	2	1	$q^{4} \Phi_{1}^{2} \Phi_{2}^{2}$	3^{n}
$\left[G_{A_{1}}, 2^{1}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	1	1	2	3		-4	$q^{6} \Phi_{1}^{2} \Phi_{2}$	$-2 \cdot 6^{n}$
$\left[G_{A_{1}}, 1^{2}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	q	1	2	3		-4	$q^{5} \Phi_{1}^{2} \Phi_{2}$	$-2 \cdot 6^{n}$
$\left[G_{A_{1}^{\prime}}, 2^{1}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	1	1	2	3		-2	$q^{6} \Phi_{1}^{2} \Phi_{2}$	-6^{n}
$\left[G_{A_{1}^{\prime},}^{2}, 1^{2}\right]$	1	$q \Phi_{1}^{2} \Phi_{2}$	q	1	2	3		-2	$q^{5} \Phi_{1}^{2} \Phi_{2}$	-6^{n}
$[T$, triv $]$	0	Φ_{1}^{2}	1	1	1	1		12	$q^{6} \Phi_{1}^{2}$	12^{n}

Table B.4: The eighteen principal G_{2}-types. The principal unipotent characters of G_{2} are in the notation of [Car93]; in particular, $\phi_{1,0}$ is the trivial character and $\phi_{1,6}$ is the Steinberg character. The unipotent characters in type A_{r-1} are labelled by partitions; in particular, r^{1} is the trivial character and 1^{r} is the Steinberg character. We distinguish the copies of A_{1} with longer and shorter roots by A_{1} and A_{1}^{\prime}, respectively. The $i^{\text {th }}$ cyclotomic polynomial is denoted Φ_{i}; in particular, $\Phi_{1}=q-1, \Phi_{2}=q+1, \Phi_{3}=q^{2}+q+1, \Phi_{4}=q^{2}+1$ and $\Phi_{6}=q^{2}-q+1$. We only need to compute π_{0}^{L} when L is isolated.

B. $5 \chi(\mathbf{X})$ when $g=1$ and $\operatorname{dim}(Z)=0$

In this section, we compute the Euler characteristic of \mathbf{X} when $g=1$ and $\operatorname{dim}(Z)=0$. By Theorem 64, the Euler characteristic is given by

$$
\chi(\mathbf{X})=|W|^{n-1} \sum_{L}|W(L)||\operatorname{Irr}(W(L))| v(L),
$$

where the sum is over all endoscopy groups L of G containing T. We can simplify

$$
\chi(\mathbf{X})=|W|^{n-1} \sum_{[L]}|[L]||W(L)||\operatorname{Irr}(W(L))| v(L)
$$

where the sum is now over all W-orbits of endoscopy groups of G containing T.

B.5.1 $G=\mathrm{SO}_{5}$

The endoscopy groups of G containing T are $\mathrm{SO}_{5}, G_{A_{1} \times A_{1}}, G_{A_{1}}, G_{A_{1}^{\prime}}$ and T (up to the W-action).

$[L]$	$\|[L]\|$	$W(L)$	$\|W(L)\|$	$\|\operatorname{Irr}(W(L))\|$	$v(L)$
$\left[\mathrm{SO}_{5}\right]$	1	D_{8}	8	5	2
$\left[G_{A_{1} \times A_{1}}\right]$	1	$S_{2} \times S_{2}$	4	4	2
$\left[G_{A_{1}}\right]$	2	S_{2}	2	2	-4
$\left[G_{A_{1}^{\prime}}\right]$	2	S_{2}	2	2	-2
$[T]$	1	1	1	1	8

Table B.5: Calculations for $\chi(\mathbf{X})$ when $G=\mathrm{SO}_{5}$ and $g=1$.

Using the formula, we have $\chi(\mathbf{X})=72 \times 8^{n-1}=9 \times 2^{3 n}$.

B.5.2 $G=G_{2}$

The endoscopy groups of G containing T are $G_{2}, G_{A_{2}}, G_{A_{1} \times A_{1}}, G_{A_{1}}, G_{A_{1}^{\prime}}$ and T (up to the W-action).

$[L]$	$\|[L]\|$	$W(L)$	$\|W(L)\|$	$\|\operatorname{Irr}(W(L))\|$	$v(L)$
$\left[G_{2}\right]$	1	D_{12}	12	6	1
$\left[G_{A_{2}}\right]$	1	S_{3}	6	3	2
$\left[G_{A_{1} \times A_{1}^{\prime}}\right]$	2	$S_{2} \times S_{2}$	4	4	1
$\left[G_{A_{1}}\right]$	2	S_{2}	2	2	-4
$\left[G_{A_{1}^{\prime}}\right]$	2	S_{2}	2	2	-2
$[T]$	1	1	1	1	12

Table B.6: Calculations for $\chi(\mathbf{X})$ when $G=G_{2}$ and $g=1$.

Using the formula, we have $\chi(\mathbf{X})=104 \times 12^{n-1}=8 \times 13 \times 12^{n-1}$.

B. $6 \chi(\mathbf{X})$ when $g=0$ and $n \geq 3$

In this section, we provide examples of the Euler characteristic of \mathbf{X} when $g=0$ and $n \geq 3$. The Euler characteristics are summarised in the following table:

G	$\chi(\mathbf{X})$
GL_{2}	$2^{n-4}(n-1)(n-2)$
GL_{3}	$2^{n-5} 3^{n-3}(n-1)(n-2)\left(9 n^{2}-27 n+16\right)$
GL_{4}	$2^{3 n-9} 3^{n-4}(n-1)(n-2)\left(108 n^{4}-648 n^{3}+1350 n^{2}-1129 n+324\right)$
SO_{5}	$2^{3 n-8}(n-1)(n-2)\left(11 n^{2}-33 n+19\right)$
G_{2}	$2^{2 n-7} 3^{n-3}(n-1)(n-2)\left(207 n^{2}-621 n+350\right)$

Table B.7: Calculations for $\chi(\mathbf{X})$ when $g=0$ and $n \geq 3$.

By Theorem 65, the Euler characteristic is given by

$$
\chi(\mathbf{X})=\left.\frac{1}{2 r!} \frac{d^{2 r}}{d q^{2 r}}\right|_{q=1} \xi(q)
$$

where $2 r:=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)$ is twice the semisimple rank of G and

$$
\xi(q)=q^{\left|\Phi(G)^{+}\right|(n-2)} \sum_{[L]} v(L)|[L]|\left(\frac{|W|}{|W(L)|}\right)^{n-1} r_{L}(q),
$$

where the sum is over all W-orbits of endoscopy groups of G containing T and

$$
r_{L}(q):=\sum_{\rho} \operatorname{dim}(\tilde{\rho})^{n}\left(\frac{P_{W(L)}(q)}{\|\rho\|(q)}\right)^{n-2}
$$

where the sum is over all principal unipotent characters of $L\left(\mathbb{F}_{q}\right)$. Calculations of $r_{L}(q)$ are below:

L	$r_{L}(q)$
T	1
A_{1}	$\Phi_{2}^{n-2}+\left(\frac{\Phi_{2}}{q}\right)^{n-2}$
$A_{1} \times A_{1}$	$r_{A_{1}(q)^{2}}$
A_{2}	$\left(\Phi_{2} \Phi_{3}\right)^{n-2}+\left(\frac{\Phi_{2} \Phi_{3}}{q^{3}}\right)^{n-2}+2^{n}\left(\frac{\Phi_{3}}{q}\right)^{n-2}$
B_{2}	$\left(\Phi_{2}^{2} \Phi_{4}\right)^{n-2}+\left(\frac{\Phi_{2}^{2} \Phi_{4}}{q^{4}}\right)^{n-2}+2\left(\frac{2 \Phi_{2}^{2}}{q}\right)^{n-2}+2^{n}\left(\frac{2 \Phi_{4}}{q}\right)^{n-2}$
G_{2}	$\left(\Phi_{2}^{2} \Phi_{3} \Phi_{6}\right)^{n-2}+\left(\frac{\Phi_{2}^{2} \Phi_{3} \Phi_{6}}{q^{6}}\right)^{n-2}+2\left(3 \frac{\Phi_{2}^{2}}{q}\right)^{n-2}+2^{n}\left(6 \frac{\Phi_{6}}{q}\right)^{n-2}+2^{n}\left(2 \frac{\Phi_{3}}{q}\right)^{n-2}$
A_{3}	$\left(\Phi_{2}^{2} \Phi_{3} \Phi_{4}\right)^{n-2}+\left(\frac{\Phi_{2}^{2} \Phi_{3} \Phi_{4}}{q^{6}}\right)^{n-2}+2^{n}\left(\frac{\Phi_{2}^{2} \Phi_{3}}{q^{2}}\right)^{n-2}+3^{n}\left(\frac{\Phi_{2}^{2} \Phi_{4}}{q}\right)^{n-2}+3^{n}\left(\frac{\Phi_{2}^{2} \Phi_{4}}{q^{3}}\right)^{n-2}$

Table B.8: Calculations for $r_{L}(q)$. The $i^{\text {th }}$ cyclotomic polynomial is denoted Φ_{i}; in particular, $\Phi_{2}=$ $q+1, \Phi_{3}=q^{2}+q+1, \Phi_{4}=q^{2}+1$ and $\Phi_{6}=q^{2}-q+1$.

B.6. $1 G=\mathrm{GL}_{2}$

In this case, $\boldsymbol{\xi}(q)$ equals

$$
q^{(n-2)}\left[r_{A_{1}}(q)-2^{n-1} r_{T}(q)\right] .
$$

Differentiating $2 r=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)=2$ times, evaluating at $q=1$ and dividing by $(2 r)$! gives

$$
\chi(\mathbf{X})=2^{n-4}(n-1)(n-2)
$$

B.6.2 $G=\mathrm{GL}_{3}$

In this case, $\xi(q)$ equals

$$
q^{3(n-2)}\left[r_{A_{2}}(q)-3^{n} r_{A_{1}}(q)+2 \times 6^{n-1} r_{T}(q)\right]
$$

Differentiating $2 r=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)=4$ times, evaluating at $q=1$ and dividing by $(2 r)$! gives

$$
\chi(\mathbf{X})=2^{n-5} 3^{n-3}(n-1)(n-2)\left(9 n^{2}-27 n+16\right)
$$

This agrees with HLRV11, (1.5.8)].

B.6.3 $G=\mathrm{GL}_{4}$

In this case, $\boldsymbol{\xi}(q)$ equals

$$
q^{6(n-2)}\left[r_{A_{3}}(q)-4^{n} r_{A_{2}}(q)-3 \times 6^{n-1} r_{A_{1} \times A_{1}}(q)+12^{n} r_{A_{1}}(q)-6 \times 24^{n-1} r_{T}(q)\right]
$$

Differentiating $2 r=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)=6$ times, evaluating at $q=1$ and dividing by $(2 r)$! gives

$$
\chi(\mathbf{X})=2^{3 n-9} 3^{n-4}(n-1)(n-2)\left(108 n^{4}-648 n^{3}+1350 n^{2}-1129 n+324\right)
$$

B.6.4 $G=\mathrm{SO}_{5}$

In this case, $\xi(q)$ equals

$$
q^{4(n-2)}\left[2 r_{B_{2}}(q)+2^{n} r_{A_{1} \times A_{1}}(q)-4^{n+1} r_{A_{1}}(q)-4^{n} r_{A_{1}}(q)+8^{n} r_{T}(q)\right]
$$

Differentiating $2 r=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)=4$ times, evaluating at $q=1$ and dividing by $(2 r)$! gives

$$
\chi(\mathbf{X})=2^{3 n-8}(n-1)(n-2)\left(11 n^{2}-33 n+19\right)
$$

B.6.5 $G=G_{2}$

In this case, $\boldsymbol{\xi}(q)$ equals

$$
q^{6(n-2)}\left[r_{G_{2}}(q)+2^{n} r_{A_{2}}(q)+3^{n} r_{A_{1} \times A_{1}}(q)-2 \times 6^{n} r_{A_{1}}(q)-6^{n} r_{A_{1}}(q)+12^{n} r_{T}(q)\right]
$$

Differentiating $2 r=2 \operatorname{dim}(T)-2 \operatorname{dim}(Z)=4$ times, evaluating at $q=1$ and dividing by $(2 r)$! gives

$$
\chi(\mathbf{X})=2^{2 n-7} 3^{n-3}(n-1)(n-2)\left(207 n^{2}-621 n+350\right)
$$

Bibliography

[Alv79] D. Alvis, The duality operation in the character ring of a finite Chevalley group, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 6, 907-911. MR $0546315 \uparrow 18$
[Alv82] D. Alvis, Duality and character values of finite groups of Lie type, J. Algebra 74 (1982), no. 1, 211-222. MR $0644227 \uparrow 18$
[Bal23] M. Ballandras, Intersection cohomology of character varieties for punctured Riemann surfaces, J. Éc. polytech. Math. 10 (2023), 141-198. MR $4536297 \uparrow 2$
[Beh91] K.A. Behrend, The Lefschetz trace formula for the moduli stack of principal bundles, Ph.D. thesis, University of California, Berkeley, 1991. MR $2686745 \uparrow 39$
[BPGPNT14] L. Brambila-Paz, O. García-Prada, P. Newstead, and R.P. Thomas (eds.), Moduli spaces, London Mathematical Society Lecture Note Series, vol. 411, Cambridge University Press, Cambridge, 2014. MR $3236896 \uparrow 1$
[Boa14] P. Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. (2) 179 (2014), no. 1, 301-365. MR $3126570 \uparrow 24$
[BP16] P. Boalch and R. Paluba, Symmetric cubic surfaces and G_{2} character varieties, J. Algebraic Geom. 25 (2016), no. 4, 607-631. MR $3533182 \uparrow 1$
[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR $1484478 \uparrow 45$
[Bou02] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. MR 189062912
[BK23] N. Bridger and M. Kamgarpour, Character stacks are PORC count, J. Aust. Math. Soc. 115 (2023), no. 3, 289-310. $\uparrow 6$
[Cam17] V. Cambò, On the E-polynomial of parabolic $\mathrm{Sp}_{2 n}$-character varieties, $\mathrm{Ph} . \mathrm{D}$. thesis, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 2017. SISSA Digital Library 16, 10, 19, 23
[Car72] R.W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59. MR0318337 +31
[Car93] R.W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley \& Sons, Ltd., Chichester, 1993. MR 1266626 11, 15, 53
[CFLO16] A. Casimiro, C. Florentino, S. Lawton, and A. Oliveira, Topology of moduli spaces of free group representations in real reductive groups, Forum Math. 28 (2016), no. 2, 275-294. MR $3466569 \uparrow 1$
[Cur80] C.W. Curtis, Truncation and duality in the character ring of a finite group of Lie type, J. Algebra 62 (1980), no. 2, 320-332. MR $0563231+18$
[CIK71] C.W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with (B, N)-pairs, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 81-116. MR $0347996 \uparrow 17$
[CR81] C.W. Curtis and I. Reiner, Methods of representation theory. Vol. I., Pure and Applied Mathematics, John Wiley \& Sons, Inc., New York, 1981. MR 063254817
[DF18] G. De Franceschi, Centralizers and conjugacy classes in finite classical groups, Ph.D. thesis, University of Auckland, 2018. University of Auckland Repository 122
[DL76] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann.

[DH93] D.I. Deriziotis and D.F. Holt, The Möbius function of the lattice of closed subsystems of a root system, Comm. Algebra 21 (1993), no. 5, 1543-1570. MR 1213972
[DM20] F. Digne and J. Michel, Representations of Finite Groups of Lie Type, 2nd ed., London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2020. MR4211777, 11, 15, 18
[DP12] R. Donagi and T. Pantev, Langlands duality for Hitchin systems, Invent. Math. 189 (2012), no. 3, 653-735. MR $2957305 \uparrow 1$
[EGH^{+}11] P.I. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yudovina, Introduction to representation theory, American Mathematical Society, Providence, RI, 2011. MR $2808160 \uparrow 17,44$
[Ga176] J.A. Gallian, The search for finite simple groups, Math. Mag. 49 (1976), no. 4, 163180. MR $0414688 \mid 12$
[Gec13] M. Geck, An introduction to algebraic geometry and algebraic groups, Oxford Graduate Texts in Mathematics, vol. 20, Oxford University Press, Oxford, 2013. MR 3086289 $\uparrow 14$
[GHL $\left.{ }^{+} 96\right]$ M. Geck, G. Hiss, F. Lübeck, G. Malle, and G. Pfeiffer, CHEVIE-a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 175-210. MR 148621545
[GM20] M. Geck and G. Malle, The character theory of finite groups of Lie type, Cambridge Studies in Advanced Mathematics, vol. 187, Cambridge University Press, Cambridge, 2020. MR4211779 $15,10,11,15,16,17,18,19,21,22,37,38,40,41,52$
[GP00] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR $1778802 \uparrow 17$
[Gia24] S. Giannini, The geometry of additive character varieties, MPhil thesis, The University of Queensland, 2024. UQ eSpace, $\uparrow 10$
[Gre55] J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402-447. MR $0072878 \uparrow 5,21$
[Hau13] T. Hausel, Global topology of the Hitchin system, Handbook of moduli. Vol. II, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, pp. 29-69. MR 3184173 1, 1,5, 18
[HLRV11] T. Hausel, E. Letellier, and F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J. 160 (2011), no. 2, 323-400.

[HMMS22] T. Hausel, A. Mellit, A. Minets, and O. Schiffmann, $P=W$ via \mathcal{H}_{2} (2022). Preprint, arXiv:2209.05429 $\uparrow 1$
[HT03] T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003), no. 1, 197-229. MR $1990670 \uparrow 1$
[HRV08] T. Hausel and F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, Invent. Math. 174 (2008), no. 3, 555-624. With an appendix by Nicholas M. Katz. MR 2453601 性, 5, 6, 10, 18
[Hig60] G. Higman, Enumerating p-groups. I: Inequalities, Proc. London Math. Soc. (3) 10 (1960), 24-30. MR0113948 15
[Hos23] V. Hoskins, Two proofs of the $P=W$ conjecture (2023), Exp. No. 1213. Séminaire Bourbaki: Vol. 2023/2024. 11
[Hum95] J.E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 134397612
[Kac90] V.G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR $1104219 \uparrow \mid$
[Kan01] R. Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 5, Springer-Verlag, New York, 2001. MR $1838580 \uparrow 13$
[KNP23] M. Kamgarpour, G. Nam, and A. Puskás, Arithmetic geometry of character varieties with regular monodromy, I (2023). Preprint, arXiv:2209.02171v4, 16, 8, 9, 29, 32, 33, 38, 39
[KNWG24] M. Kamgarpour, G. Nam, B. Whitbread, and S. Giannini, Counting points on generic character varieties of reductive groups (2024). In preparation. 1 iv, 2
[LRV23] E. Letellier and F. Rodriguez-Villegas, E-series of character varieties of nonorientable surfaces, Ann. Inst. Fourier (Grenoble) 73 (2023), no. 4, 1385-1420. MR4613610, 12, 4, 5, 10
[Let05] E. Letellier, Fourier transforms of invariant functions on finite reductive Lie algebras, Lecture Notes in Mathematics, vol. 1859, Springer-Verlag, Berlin, 2005. MR 2114404 $\uparrow 8$
[Let15] E. Letellier, Character varieties with Zariski closures of GL_{n}-conjugacy classes at punctures, Selecta Math. (N.S.) 21 (2015), no. 1, 293-344. MR 3300418 饥
[Lus77] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), no. 2, 125-175. MR 046327515
[Lus84] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies, vol. 107, Princeton University Press, Princeton, NJ, 1984. MR 074247215
[Mac95] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. MR $1354144 \uparrow 34$
[MS24] D. Maulik and J. Shen, The $P=W$ conjecture for $G L_{n}$ (2024). Preprint, arXiv:2209.02568v2, $\uparrow 1$
[MS03] G.J. McNinch and E. Sommers, Component groups of unipotent centralizers in good characteristic, J. Algebra 260 (2003), no. 1, 323-337. Special issue celebrating the 80th birthday of Robert Steinberg. MR $1976698 \uparrow 12$
[Mel18] A. Mellit, Integrality of Hausel-Letellier-Villegas kernels, Duke Math. J. 167 (2018), no. 17, 3171-3205. MR 3874651 12
[Mel19] A. Mellit, Cell decompositions of character varieties (2019). Preprint, arXiv:1905.10685, 12
[Mel20] A. Mellit, Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, Ann. of Math. (2) 192 (2020), no. 1, 165-228. MR 4125451 $\uparrow 2$, 9
[Mil17] J.S. Milne, Algebraic groups, Cambridge Studies in Advanced Mathematics, vol. 170, Cambridge University Press, Cambridge, 2017. MR $3729270 \uparrow 2,28$
[Mum65] D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), vol. Band 34, Springer-Verlag, Berlin-New York, 1965. MR 0214602 $\uparrow 4$
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR $1304906 \uparrow 39$
[Nam23] G. Nam, Arithmetic geometry of character varieties with regular monodromy, Ph.D. thesis, The University of Queensland, 2023. UQ eSpace, $\uparrow 25$
[Noo04] B. Noohi, Fundamental groups of algebraic stacks, J. Inst. Math. Jussieu 3 (2004), no. 1, 69-103. MR $2036598 \uparrow 39$
[Ols16] M. Olsson, Algebraic spaces and stacks, American Mathematical Society Colloquium Publications, vol. 62, American Mathematical Society, Providence, RI, 2016. MR $3495343 \uparrow 39$
[PS15] I. Pak and A. Soffer, On Higman's $k\left(U_{n}\left(\mathbb{F}_{q}\right)\right)$ conjecture (2015). Preprint, arXiv:1507.00411 \uparrow 何
[Sim91] C.T. Simpson, Nonabelian Hodge theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, pp. 747-756.

[Sim92] C.T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5-95. MR $1179076 \uparrow 1$
[Spr98] T.A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. MR $1642713 \uparrow 3$
[Sta12] R.P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR2868112 1
[Ste65] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49-80. MR0180554 17, 25
[Ste75] R. Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63-92. MR 0354892 128

[^0]: ${ }^{1}$ The leading coefficient is actually the number of irreducible components of maximum dimension. This is because the counting polynomial captures information about the compactly supported cohomology of X. Often we deal with equidimensional spaces, so this technicality can be ignored.

[^1]: ${ }^{2}$ This is done so that $C_{i}\left(\mathbb{F}_{q}\right) \subseteq G\left(\mathbb{F}_{q}\right)$ is a single $G\left(\mathbb{F}_{q}\right)$-conjugacy class GM20, §2.7.1].
 ${ }^{3}$ Understanding character varieties when the algebraic group is not reductive is closely-related to Higman's conjecture Hig60, p. 29] which asks whether the number of conjugacy classes of the group of unipotent matrices in $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ is a polynomial in q. There is evidence to suggest Higman's conjecture fails for $n \geq 59$ [PS15] Conjecture 1.6].

[^2]: ${ }^{1}$ This is because we rely on estimates concerning the ranks of root systems. For details, see7.2

[^3]: ${ }^{2}$ In HRV08, HLRV11], the authors consider the mixed Hodge polynomial, rather than the mixed Poincaré polynomial, which is an invariant associated to the character variety over \mathbb{C}, rather than the character variety over \mathbb{F}_{q}.

[^4]: ${ }^{1}$ Such a subsystem will automatically be closed; $\Psi \subseteq \Phi$ is closed if $\alpha, \beta \in \Psi$ and $\alpha+\beta \in \Phi$ then $\alpha+\beta \in \Psi$.

[^5]: ${ }^{2}$ Deriziotis' formulation assumes G is simple but this is not necessary, c.f. MS03, Proposition 30, Remark 31, Proposition 32]. It also assumes G is simply connected so that centralisers of semisimple elements of G are connected.

[^6]: ${ }^{3}$ We use phrases 'endoscopy group of G ' and 'isolated with respect to G ' because the endoscopy may not lie in G.

[^7]: ${ }^{4}$ The fact that Deligne-Lusztig induction reduces to plain induction is proven in Car93, Proposition 7.2.4].

[^8]: ${ }^{5}$ We do not need a formula for $\|\chi\|(q)$, but one is given in GM20. Definition 2.3.25].

[^9]: ${ }^{6}$ This dichotomy is a special case of the exclusion theorem GM20. Theorem 2.3.2].

[^10]: ${ }^{1}$ The fact that ρ^{\prime} is unipotent follows from considering $\pi: L \rightarrow \dot{w} L \dot{w}^{-1}, \ell \mapsto \dot{w} \ell \dot{w}^{-1}$ in GM20. Proposition 2.3.15].

[^11]: ${ }^{2}$ The number of types of weight n is described in the OEIS entry A003606

[^12]: ${ }^{1}$ We obtain an expression for $S_{\tau}(q)$ without generic conjugacy classes, but its computation is less clear.

[^13]: ${ }^{1}$ All derivatives of $\xi(q)$ exist at $q=1$ because it is clearly a rational function defined at $q=1$.

