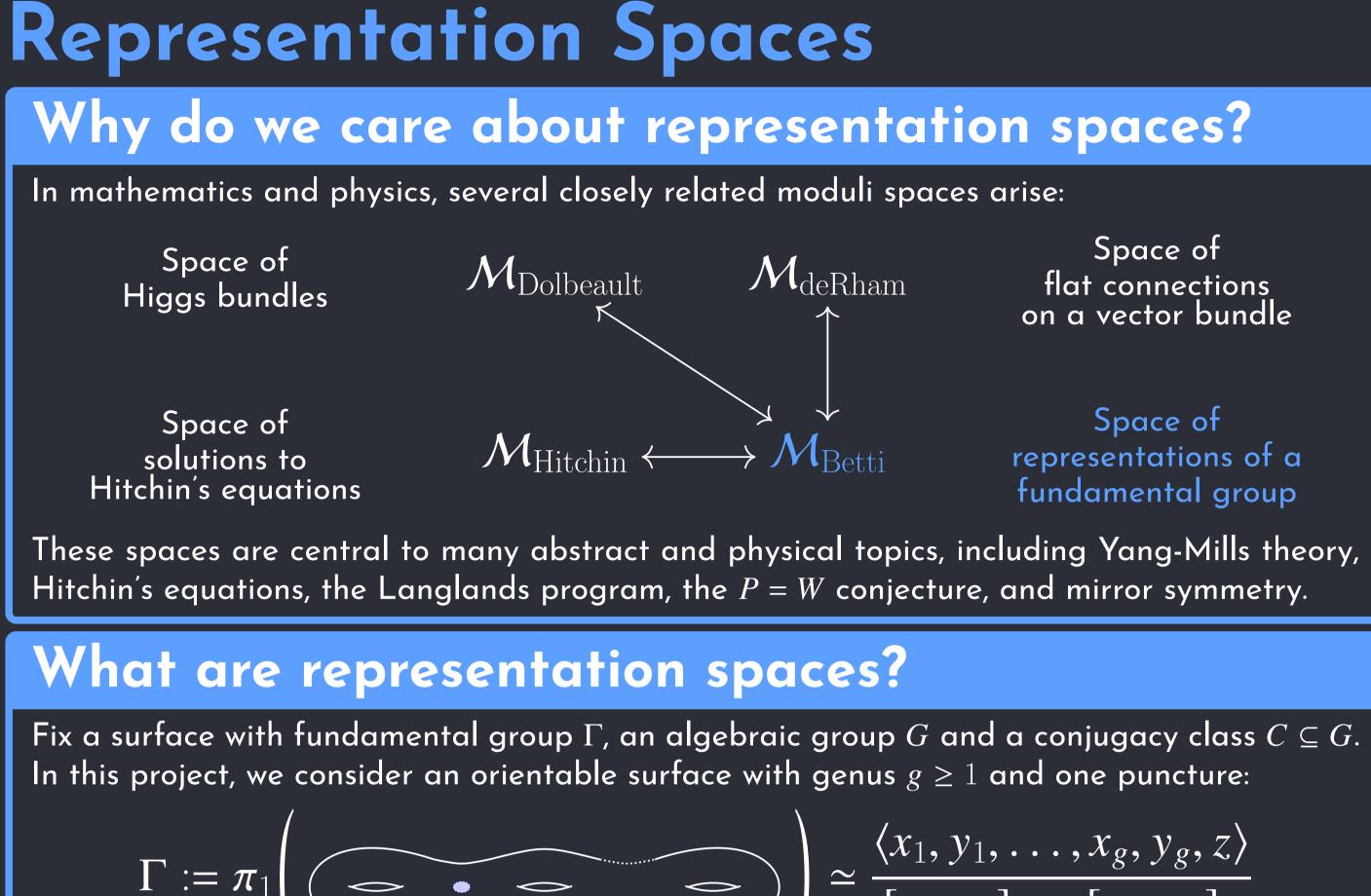
Topology of Representation Spaces via Arithmetic



We are interested in two representation spaces:

* The representation variety $R := \{ f \in \text{Hom}(\Gamma, G) \mid f(z) \in C \}$

 \star The character variety $X := R /\!\!/ G$

The quotient $R /\!\!/ G$ above is the Geometric Invariant Theory (GIT) quotient. We can form this quotient because there is an action $G \curvearrowright R$ given by conjugation.

Frobenius' mass formula

Frobenius tells us how to count \mathbb{F}_q -points of the representation variety.

$$\frac{|R(\mathbb{F}_q)|}{|G(\mathbb{F}_q)|} = \sum_{\chi \in \operatorname{Irr}(G(\mathbb{F}_q))} \left(\frac{|G(\mathbb{F}_q)|}{\chi(1)}\right)^{2g-2} \frac{\chi(C(\mathbb{F}_q))}{\chi(1)} |G(\mathbb{F}_q)| = \sum_{\chi \in \operatorname{Irr}(G(\mathbb{F}_q))} \left(\frac{|G(\mathbb{F}_q)|}{\chi(1)}\right)^{2g-2} \frac{\chi(1)}{\chi(1)} |G(\mathbb{F}_q)| = \sum_{\chi \in \operatorname{Irr}(G(\mathbb{F}_q))} \left(\frac{|G(\mathbb{F}_q)|}{\chi(1)}\right)^{2g-2} \frac{\chi(1)}{\chi(1)}$$

We want to show that this is a polynomial in q and compute its features.

Problems:

Solutions:

1 Choose G reductive so that we know $Irr(G(\mathbb{F}_q))$

2 Write sum over data independent of q

 $(\mathbf{3})\chi(C(\mathbb{F}_q))$ is unknown in general

2 $Irr(G(\mathbb{F}_q))$ depends on q

(1) $Irr(G(\mathbb{F}_q))$ is unknown in general

- (3) Choose C 'semisimple, regular generic'
- so that we know $\chi(C(\mathbb{F}_q))$

Literature

In [HRV, HLRV], the authors considered $G = GL_n$ with k 'semisimple generic' conjugacy classes, with \mathcal{N}_C recording the multiplicities of their eigenvalues. **Theorem 4.** The \mathbb{F}_q -points of the character variety X is polynomial in q and

* The dimension of X is $(2g-2+k)n^2 - \mathcal{N}_C + 2$

- \star The Euler characteristic is almost always 0
- $\star X$ is connected
- \star The coefficients of $|X(\mathbb{F}_q)|$ are a palindrome
- Our main theorem agrees with these results.

Acknowledgements

Joint with Masoud Kamgarpour and GyeongHyeon Nam. MK is supported by ARC Discovery Project DP200102316. GN & BW are supported by the Australian Government Research Training Program scholarships. Made in LATEX with Josefin Sans and tcolorbox.

References [HRV] Mixed Hodge polynomials of character varieties, T. Hausel, F. Rodriguez-Villegas, 2008. [HLRV] Arithmetic harmonic analysis on character and quiver varieties, T. Hausel, E. Letellier, F. Rodriguez-Villegas, 2011.

Topology

Space of flat connections on a vector bundle

Space of representations of a fundamental group

 $[x_1, y_1] \cdots [x_g, y_g] z$

 $\mathbb{T}(\mathbb{F}_q)|$

E-polynomials

To study the representation spaces, we compute their E-This is a specialisation of the Hodge polynomial which en

> Hodge polynomial H(q,t)

It is extremely difficult to compute Hodge polynomials. How H(q, -1) = E(q) has guided conjectural formulas for Hodg

Topological information

If Y has E-polynomial E(q) then we can access the following

The degree of E(q) is the dim

r-----

The value E(1) is the Euler charc

The leading coefficient of E(q) is the num

For instance,

 $Y = GL_3$ -flag variety \rightsquigarrow $|Y(\mathbb{F}_q)| = |GL_3(\mathbb{F}_q)|$

Therefore Y has dimension 3, Euler characteristic 6 and is

Results

Theorem 3 (Kamgarpour-Nam-W. 2023). Let G be a connected split reductive group with connected centre Z. Let $C \subseteq G$ be a 'semisimple regular generic' conjugacy class.

Then the \mathbb{F}_q -points of the character variety X is polynomial in q and **\star The dimension of** X is $(2g-1) \dim G - \operatorname{rank} G + 2 \dim Z$ * The Euler characteristic of X is 0 if g > 1 or dim Z > 0 \star The number of components of X and the centre of G^{\vee} are the same

- \star The coefficients of $|X(\mathbb{F}_q)|$ are a palindrome
- This points towards a 'curious' Poincare duality

Literature

In [Cambò], the author considered $G = \operatorname{Sp}_{2n}$ and a 'semisimple regular generic' conjugacy class.

Theorem 5. The \mathbb{F}_q -points of the character variety X is polynomial in q and

- **★** The dimension of X is (2g-1)n(2n+1) n
- \star The Euler characteristic is almost always 0
- $\star X$ is connected
- \star The coefficients of $|X(\mathbb{F}_q)|$ are a palindrome
- Despite the centre of Sp_{2n} being disconnected, the results are strikingly similar.

Arithmetic	
	Weil's conjectures & Ka
oolynomials. ncodes fine cohomological data.	To compute <i>E</i> -polynomials, we rely on the W ics. The conjectures (now theorems) are tec
> E-polynomial	Cohomological obtained by counting
E(q)	A theorem due to Katz' refines this philoso
wever, computing the specialisation e polynomials and aided full proofs.	Theorem 1 (Katz). Suppose that <i>Y</i> is a vari Then the <i>E</i> -polynomial of <i>Y</i> is given by <i>E</i> (4)
	Character sums are pol
ving topological information:	Once Problem 2 is solved, the polynomial
ension of Y	Problem 2. Suppose that $T \subseteq G$ is a split meta meta over, fix a closed root subsystem $\Psi \subseteq$
ension of Y acteristic of Y	Moreover, fix a closed root subsystem $\Psi \subseteq$
acteristic of <i>Y</i> ber of components of <i>Y</i>	Moreover, fix a closed root subsystem $\Psi \subseteq$
acteristic of Y	Moreover, fix a closed root subsystem $\Psi \subseteq$ Show that the 'character sum' defined by $\theta \in Irr$

Visualisations

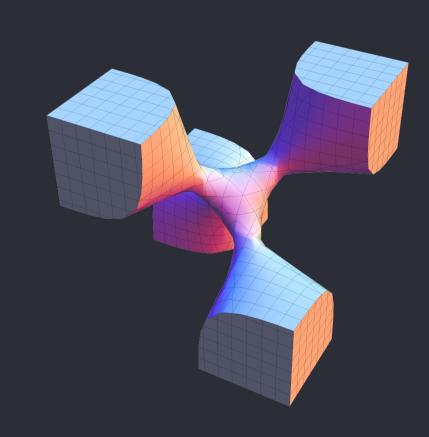


Figure 1: When $G = SL_2$ and $\Gamma = \pi_1(\text{Torus}) \simeq \langle x, y \mid xy = yx \rangle$, we obtain the Cayley cubic. The Cayley cubic's defining equation is $16xyz + 12(x^2 + y^2 + z^2) = 27$.

Loose ends and open problems

* What happens for different conjugacy classes? What if the surface has multiple punctures? * What is the mixed Hodge polynomial of these representation spaces?

spaces using these combinatorial ideas as well?

* When g = 1, the Euler characteristic E_n of an Sp_{2n} -character variety was given in [Cambò]:

$$\sum_{n\geq 0} \frac{E_n}{2^n n!} T^n = \prod_{k\geq 1} \frac{1}{(1-T^k)^3} = 1 + 3T + 9T^2 + \cdots$$

Can we obtain an expression for the Euler characteristic when g = 1 and dim Z = 0?

References

[Cambò] On the *E*-polynomial of parabolic Sp_{2n} -character varieties, V. Cambò, 2017.

[KNP] Arithmetic geometry of character varieties with regular monodromy I, M. Kamgarpour, G. Nam, A. Puskás, 2023.

tz' theorem

Weil conjectures, a jewel of 20th century mathematchnical, but they teach us an important philosophy:

information can be ng points over finite fields

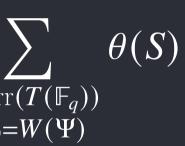
riety and $|Y(\mathbb{F}_q)|$ is given by some polynomial P(q).

(q) = P(q).

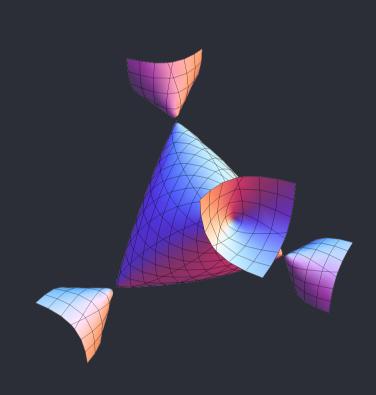
ynomia

y of $|X(\mathbb{F}_q)|$ reduces to the following problem:

```
maximal torus and that S \in T(\mathbb{F}_q).
```



was concluded that it is 'essentially' polynomial.



* When $G = GL_n$, there is a strong combinatorial theory. In [HRV, HLRV], the authors used symmetric functions and Macdonald polynomials. Can we count points of representation

