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THE SPACES I STUDY

Data: algebraic group G, and f.g. group Γ.

G, Γ⇝ Hom(Γ,G) ↶ G by conj.

If Γ = π1(Surface), we are in the world of the Riemann–Hilbert
correspondence, non-abelian Hodge theory, the Langlands
program, mirror symmetry, etc.
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THE SPACES I STUDY

Surface S with genus g ≥ 0 and r ≥ 0 punctures.

π1(S) = π1

( )

=
〈a1,b1, . . . , ag,bg, y1, . . . , yr〉
[a1,b1] · · · [ag,bg]y1 · · · yr

Fix conj. classes C1, . . . ,Cr ⊆ G. The representation variety is

R :=

{
f : π1(S) → G

∣∣∣∣ f(yi) ∈ Ci}↶ G by conj.

⇝ [R/G] and R//G 2



HOW TO STUDY A SPACE?

Fix X a variety over Z.
Moral [Weil]

Count |X(Fq)|
⇝ Understand H∗(X)

Theorem [Katz]
The polynomial
q 7→ |X(Fq)| is an
invariant of H∗(X)
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HOW TO STUDY A SPACE?

Example: Consider Gm. This is defined by xy− 1 = 0. Then

|Gm(Fq)| = |{(x, y) ∈ F2q | xy− 1 = 0}| = q− 1.

We read q− 1 in the following way:

dimGm = degree = 1

χ(Gm) = (q− 1)
∣∣∣
q 7→1

= 0

# of components = leading coeff. = 1
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HOW TO COUNT POINTS?

Question: How do we count points on R and R//G?

Answer:
|R(Fq)|
|G(Fq)|

=
∑

χ∈Irr(G(Fq))

(
|G(Fq)|
χ(1)

)2g−2∏
i

χ(Ci(Fq))
χ(1) |Ci(Fq)|.

Goal: Compute this expression and show it is polynomial in q.
Problems:
(1) Irr(G(Fq)) is hard to understand.
(2) Irr(G(Fq)) depends on q.
(3) χ(Ci(Fq)) is hard to evaluate.
(4) Bridge from |R(Fq)| to |(R//G)(Fq)| is unclear.
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HOW TO COUNT POINTS?

Solutions:
(1) Irr(G(Fq)) is hard to understand.

Fix G reductive⇝ Deligne–Lusztig theory.
(2) Irr(G(Fq)) depends on q.

Reparameterise sum over data independent of q.
(3) χ(Ci(Fq)) is hard to evaluate.

Pick Ci semisimple and regular.
(4) Bridge from |R(Fq)| to |(R//G)(Fq)| is unclear.

Pick Ci generically.
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Abstract. We calculate the E-polynomials of certain twisted GL(n,C)-
character varieties Mn of Riemann surfaces by counting points over finite
fields using the character table of the finite group of Lie-type GL(n,Fq)
and a theorem proved in the appendix by N. Katz. We deduce from this
calculation several geometric results, for example, the value of the topo-
logical Euler characteristic of the associated PGL(n,C)-character variety.
The calculation also leads to several conjectures about the cohomology
of Mn: an explicit conjecture for its mixed Hodge polynomial; a conjec-
tured curious hard Lefschetz theorem and a conjecture relating the pure part
to absolutely indecomposable representations of a certain quiver. We prove
these conjectures for n = 2.
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1 Introduction

Let g ≥ 0 and n > 0 be integers. Let ζn ∈ C be a primitive n-th root of
unity. Abbreviating [A, B] = ABA−1B−1 and denoting the identity matrix

ARITHMETIC HARMONIC ANALYSIS ON
CHARACTER AND QUIVER VARIETIES

TAMÁS HAUSEL, EMMANUEL LETELLIER, and FERNANDO
RODRIGUEZ-VILLEGAS

Abstract
We propose a general conjecture for the mixed Hodge polynomial of the generic char-
acter varieties of representations of the fundamental group of a Riemann surface of
genus g to GLn.C/ with fixed generic semisimple conjugacy classes at k punctures.
This conjecture generalizes the Cauchy identity for Macdonald polynomials and is
a common generalization of two formulas that we prove in this paper. The first is a
formula for the E-polynomial of these character varieties which we obtain using the
character table of GLn.Fq/. We use this formula to compute the Euler characteristic
of character varieties. The second formula gives the Poincaré polynomial of certain
associated quiver varieties which we obtain using the character table of gln.Fq/.
In the last main result we prove that the Poincaré polynomials of the quiver vari-
eties equal certain multiplicities in the tensor product of irreducible characters of
GLn.Fq/. As a consequence we find a curious connection between Kac-Moody alge-
bras associated with comet-shaped, and typically wild, quivers and the representation
theory of GLn.Fq/.
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CHARACTER VARIETIES IN TYPE A

Setting:

• G = GLn
• C1, . . . , Cr reg. s.s. generic conj. classes

Theorem (Hausel–Letellier–Rodriguez-Villegas, ‘11)
|(R//G)(Fq)| is a polynomial in q and we have
• dimR//G = (2g− 2+ r) · n2 + 2− r · n
• χ(R//G) = 0 if g > 0
• |π0(R//G)| = 1⇝ R//G is connected

Phenomenom: |(R//G)(Fq)| is a palindrome
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CHARACTER VARIETIES IN ARBITRARY TYPE

Setting:

• G conn. split red. group with conn. centre Z(G)
• C1, . . . , Cr reg. s.s. generic conj. classes

Theorem (Kamgarpour–Nam–W., ‘23)
|(R//G)(Fq)| is a polynomial in q and we have
• dimR//G = (2g− 2+ r) dimG+ 2 dim Z(G)− r · rankG
• χ(R//G) = 0 if g > 1 or dim Z > 0
• |π0(R//G)| = |π0(Z(G∨))| if g > 0 or r > 3

Same phenomenom: |(R//G)(Fq)| is a palindrome
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POLYNOMIALS IN THE VARIABLE q AND t

|(R//G)(Fq)|
Mixed Hodge poly.
H(R//G;q, t) |Y(Fq)|

t=−1

When G = GL2:

|(R//G)(Fq)|
= q2g−1(q−1)4g−2(q+1)2g−1

+ (q−1)4g−2(q+1)2g+1

+ −q2g−1(q−1)4g−2

+ 0

H(R//G;q, t)
= (qt4)2g−1(1+qt)2g−1(1+q2t3)2g

(1−qt)(1−qt2)

+ t8g−4(1+qt)2g−1(1+q2t)2g
(1−q)(1−qt)

+ (qt4)2g−1(1+qt)4g

(1−q)(1−qt2)

+ 0

|Y(Fq)|
= q8g−3

q−1

+ q6g−3

+ − q6g−2
q−1

+ 0
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