Counting points on the representation variety

Bailey Whitbread
AustMS 2022, December 6-9.

A representation space [CFLO].

Situating the representation variety

For a Riemann surface X and a reductive group G, consider the space of representations $\operatorname{Hom}\left(\pi_{1}(X), G\right) \subset G^{r}$.

Situating the representation variety

For a Riemann surface X and a reductive group G, consider the space of representations $\operatorname{Hom}\left(\pi_{1}(X), G\right) \subset G^{r}$.

There's an action $\operatorname{Hom}\left(\pi_{1}(X), G\right) \curvearrowleft G$ by conjugation.

Situating the representation variety

For a Riemann surface X and a reductive group G, consider the space of representations $\operatorname{Hom}\left(\pi_{1}(X), G\right) \subset G^{r}$.

There's an action $\operatorname{Hom}\left(\pi_{1}(X), G\right) \curvearrowleft G$ by conjugation.
\rightsquigarrow We can quotient the representation space by G.
\rightsquigarrow We obtain the orbit space $\operatorname{Hom}\left(\pi_{1}(X), G\right) / G$.

Situating the representation variety

For a Riemann surface X and a reductive group G, consider the space of representations $\operatorname{Hom}\left(\pi_{1}(X), G\right) \subset G^{r}$.

There's an action $\operatorname{Hom}\left(\pi_{1}(X), G\right) \curvearrowleft G$ by conjugation.
\rightsquigarrow We can quotient the representation space by G.
\rightsquigarrow We obtain the orbit space $\operatorname{Hom}\left(\pi_{1}(X), G\right) / G$.

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { inequivalent reps. } \\
\pi_{1}(X) \rightarrow G
\end{array}\right\} \\
\| \operatorname{Hom}\left(\pi_{1}(X), G\right) / / G
\end{gathered}
$$

Situating the representation variety

For a Riemann surface X and a reductive group G, consider the space of representations $\operatorname{Hom}\left(\pi_{1}(X), G\right) \subset G^{r}$.

There's an action $\operatorname{Hom}\left(\pi_{1}(X), G\right) \curvearrowleft G$ by conjugation.
\rightsquigarrow We can quotient the representation space by G.
\rightsquigarrow We obtain the orbit space $\operatorname{Hom}\left(\pi_{1}(X), G\right) / G$.

Situating the representation variety

For a Riemann surface X and a reductive group G, consider the space of representations $\operatorname{Hom}\left(\pi_{1}(X), G\right) \subset G^{r}$.

There's an action $\operatorname{Hom}\left(\pi_{1}(X), G\right) \curvearrowleft G$ by conjugation.
\rightsquigarrow We can quotient the representation space by G.
\rightsquigarrow We obtain the orbit space $\operatorname{Hom}\left(\pi_{1}(X), G\right) / G$.

The representation variety

We need to define three pieces of data:

The representation variety

We need to define three pieces of data:

- $X:=$ once-punctured genus $g>0$ compact orientable Riemann surface, which has the fundamental group
$\Gamma:=\frac{\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z\right\rangle}{\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right] z}=\pi_{1}(\theta \quad \cdots \cdots, \quad)$.

The representation variety

We need to define three pieces of data:

- $X:=$ once-punctured genus $g>0$ compact orientable Riemann surface, which has the fundamental group

$$
\Gamma:=\frac{\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z\right\rangle}{\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right] z}=\pi_{1}(\infty \cdots \cdots, \infty) .
$$

- $G:=$ reductive group (split conn., conn. centre) over \mathbb{F}_{q}. Think $G=G L_{n}$.

The representation variety

We need to define three pieces of data:

- $X:=$ once-punctured genus $g>0$ compact orientable Riemann surface, which has the fundamental group
$\Gamma:=\frac{\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z\right\rangle}{\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right] z}=\pi_{1}(\infty \quad \cdots$,
- $G:=$ reductive group (split conn., conn. centre) over \mathbb{F}_{q}. Think $G=G L_{n}$.
- $C:=[s]=$ conjugacy class (s.s. and strongly regular) of G. Think $s=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \neq s_{j}$.

The representation variety

We need to define three pieces of data:

- $X:=$ once-punctured genus $g>0$ compact orientable Riemann surface, which has the fundamental group

$$
\Gamma:=\frac{\left\langle x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z\right\rangle}{\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right] z}=\pi_{1}(\infty \cdots \cdots, \infty) .
$$

- $G:=$ reductive group (split conn., conn. centre) over \mathbb{F}_{q}. Think $G=G L_{n}$.
- $C:=[s]=$ conjugacy class (s.s. and strongly regular) of G.

Think $s=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \neq s_{j}$.
The representation variety $\mathbf{R}(G, \Gamma, C)$ associated to this data is
$\mathbf{R}:=\left\{\left(x_{1}, y_{1}, \ldots, x_{g}, y_{g}, z\right) \in G^{2 g} \times C \mid\left[x_{1}, y_{1}\right] \ldots\left[x_{g}, y_{g}\right] z=1\right\}$.

E-polynomials and their properties

We want to understand the topology of the representation variety. In particular, we seek an expression for the E-polynomial of \mathbf{R}, denoted $E(\mathbf{R} ; x, y) \in \mathbb{Z}[x, y]$.

For a complex variety \mathbf{X}, the E-polynomial $E(\mathbf{X} ; x, y)$ carries an abundunce of topological information:

E-polynomials and their properties

We want to understand the topology of the representation variety. In particular, we seek an expression for the E-polynomial of \mathbf{R}, denoted $E(\mathbf{R} ; x, y) \in \mathbb{Z}[x, y]$.

For a complex variety \mathbf{X}, the E-polynomial $E(\mathbf{X} ; x, y)$ carries an abundunce of topological information:
(i) The dimension of \mathbf{X} is half of the degree of $E(\mathbf{X} ; x, y)$,
(ii) The Euler characteristic of \mathbf{X} is $E(\mathbf{X} ; 1,1)$,
(iii) The \# of (max'l dimension) irred. components of \mathbf{X} is the leading coefficient of $E(\mathbf{X} ; x, y)$.

Katz' theorem

Theorem [Katz]

Let \mathbf{X} be a variety. Assume that $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=P_{\mathbf{X}}(q)$ for some polynomial $P_{\mathbf{X}} \in \mathbb{Z}[q]$.

Katz' theorem

Theorem [Katz]

Let \mathbf{X} be a variety. Assume that
$\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=P_{\mathbf{X}}(q)$ for some polynomial
$P_{\mathbf{X}} \in \mathbb{Z}[q]$. Then $E(\mathbf{X} ; x, y)=P_{\mathbf{X}}(x y)$.

Katz' theorem

Theorem [Katz]

Let \mathbf{X} be a variety. Assume that
$\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=P_{\mathbf{X}}(q)$ for some polynomial
$P_{\mathbf{X}} \in \mathbb{Z}[q]$. Then $E(\mathbf{X} ; x, y)=P_{\mathbf{X}}(x y)$.

Moral [Katz]

Just show $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|$ is a polynomial in q !

Katz' theorem

Theorem [Katz]

Let \mathbf{X} be a variety. Assume that $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=P_{\mathbf{X}}(q)$ for some polynomial $P_{\mathbf{x}} \in \mathbb{Z}[q]$. Then $E(\mathbf{X} ; x, y)=P_{\mathbf{X}}(x y)$.

Moral [Katz]

 Just show $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|$ is a polynomial in q !We may consider E as a function of one variable $q=x y$ and write $E(\mathbf{X} ; q)=P_{\mathbf{X}}(q)$ instead. In this case, $\operatorname{dim} \mathbf{X}=\operatorname{deg} E(\mathbf{X} ; q)$.

Katz' theorem

Theorem [Katz]

Let \mathbf{X} be a variety. Assume that $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=P_{\mathbf{X}}(q)$ for some polynomial $P_{\mathbf{X}} \in \mathbb{Z}[q]$. Then $E(\mathbf{X} ; x, y)=P_{\mathbf{X}}(x y)$.

Moral [Katz]

 Just show $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|$ is a polynomial in q !We may consider E as a function of one variable $q=x y$ and write $E(\mathbf{X} ; q)=P_{\mathbf{X}}(q)$ instead. In this case, $\operatorname{dim} \mathbf{X}=\operatorname{deg} E(\mathbf{X} ; q)$.

For example,

$$
\begin{aligned}
\left|\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)\right| & =q^{4}-q^{3}-q^{2}+q=P_{\mathrm{GL}_{2}}(q) \\
\text { dimension } & =4, \text { Euler characteristic }=0
\end{aligned}
$$ no. of irred. components $=1$.

The Frobenius mass formula

Theorem [Frobenius 1896, Mednykh 1978]

$$
\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|=\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\chi \in \operatorname{lrr}\left(G\left(\mathbb{F}_{q}\right)\right)}\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-1} \chi(s) .
$$

The Frobenius mass formula

Theorem [Frobenius 1896, Mednykh 1978]

$$
\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|=\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\chi \in \operatorname{lrr}\left(G\left(\mathbb{F}_{q}\right)\right)}\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-1} \chi(s) .
$$

Understand

$$
\operatorname{lrr}\left(G\left(\mathbb{F}_{q}\right)\right)
$$

The Frobenius mass formula

Theorem [Frobenius 1896, Mednykh 1978]

$$
\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|=\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\chi \in \operatorname{lrr}\left(G\left(\mathbb{F}_{q}\right)\right)}\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right|}{\chi(1)}\right)^{2 g-1} \chi(s) .
$$

$$
\begin{gathered}
\begin{array}{l}
\text { Understand } \\
\operatorname{Irr}\left(G\left(\mathbb{F}_{q}\right)\right)
\end{array} \longrightarrow \quad \text { mass formula }
\end{gathered} \begin{gathered}
\text { Obtain }\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right| \\
\text { and } E(\mathbf{R} ; q)
\end{gathered}
$$

This turns the problem of algebraic geometry into a problem of representation theory.

Recollections of representation theory

Theorems of Deligne-Lusztig, Curtis-Iwahori-Kilmoyer and Tits tell us that we need to look at:

- Stabiliser subgroups W_{θ}, where $W \curvearrowright \theta \in \operatorname{lrr}\left(T\left(\mathbb{F}_{q}\right)\right)$, and
- The principal series representation $\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

Recollections of representation theory

Theorems of Deligne-Lusztig, Curtis-Iwahori-Kilmoyer and Tits tell us that we need to look at:

- Stabiliser subgroups W_{θ}, where $W \curvearrowright \theta \in \operatorname{lrr}\left(T\left(\mathbb{F}_{q}\right)\right)$, and
- The principal series representation $\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

One of the maximal tori of $G\left(\mathbb{F}_{q}\right)=G L_{n}\left(\mathbb{F}_{q}\right)$ looks like

$$
T\left(\mathbb{F}_{q}\right)=\left(\begin{array}{ccc}
\mathbb{F}_{q}^{\times} & & \\
& \ddots & \\
& & \mathbb{F}_{q}^{\times}
\end{array}\right)
$$

Recollections of representation theory

Theorems of Deligne-Lusztig, Curtis-Iwahori-Kilmoyer and Tits tell us that we need to look at:

- Stabiliser subgroups W_{θ}, where $W \curvearrowright \theta \in \operatorname{lrr}\left(T\left(\mathbb{F}_{q}\right)\right)$, and
- The principal series representation $\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

One of the maximal tori of $G\left(\mathbb{F}_{q}\right)=G L_{n}\left(\mathbb{F}_{q}\right)$ looks like

$$
T\left(\mathbb{F}_{q}\right)=\left(\begin{array}{ccc}
\mathbb{F}_{q}^{\times} & & \\
& \ddots & \\
& & \mathbb{F}_{q}^{\times}
\end{array}\right)
$$

whose characters look like

$$
\theta_{\alpha_{1}, \ldots, \alpha_{n}}\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{n}
\end{array}\right):=\alpha_{1}\left(t_{1}\right) \cdots \alpha_{n}\left(t_{n}\right), \quad \alpha_{i} \in \operatorname{Irr}\left(\mathbb{F}_{q}^{\times}\right) .
$$

Recollections of representation theory

The Weyl group $W \simeq S_{n}$ acts via permutating the α_{i} 's:

$$
\sigma \cdot \theta_{\alpha_{1}, \ldots, \alpha_{n}}:=\theta_{\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}} .
$$

So their stabilisers look like

$$
W_{\theta_{\alpha_{1}, \ldots, \alpha_{n}}} \simeq S_{n_{1}} \times \cdots \times S_{n_{r}}, \quad \text { where } n_{1}+\cdots+n_{r}=n
$$

Recollections of representation theory

The Weyl group $W \simeq S_{n}$ acts via permutating the α_{i} 's:

$$
\sigma \cdot \theta_{\alpha_{1}, \ldots, \alpha_{n}}:=\theta_{\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}} .
$$

So their stabilisers look like

$$
W_{\theta_{\alpha_{1}, \ldots, \alpha_{n}}} \simeq S_{n_{1}} \times \cdots \times S_{n_{r}}, \quad \text { where } n_{1}+\cdots+n_{r}=n
$$

The collection of all of these subgroups forms a lattice.

Recollections of representation theory

The Weyl group $W \simeq S_{n}$ acts via permutating the α_{i} 's:

$$
\sigma \cdot \theta_{\alpha_{1}, \ldots, \alpha_{n}}:=\theta_{\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}} .
$$

So their stabilisers look like

$$
W_{\theta_{\alpha_{1}, \ldots, \alpha_{n}}} \simeq S_{n_{1}} \times \cdots \times S_{n_{r}}, \quad \text { where } n_{1}+\cdots+n_{r}=n
$$

The collection of all of these subgroups forms a lattice.
For GL_{3}, this is iso. to the lattice of set-partitions of $\{1,2,3\}$:

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

For example, if $G=G L_{3}$ and $\theta=\theta_{\alpha, \alpha, \alpha}$, then $W_{\theta} \simeq S_{3}$.

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

For example, if $G=\mathrm{GL}_{3}$ and $\theta=\theta_{\alpha, \alpha, \alpha}$, then $W_{\theta} \simeq S_{3}$.
Recall: Irreducible representations of $S_{3} \longleftrightarrow$ Partitions of 3 .

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

For example, if $G=\mathrm{GL}_{3}$ and $\theta=\theta_{\alpha, \alpha, \alpha}$, then $W_{\theta} \simeq S_{3}$.
Recall: Irreducible representations of $S_{3} \longleftrightarrow$ Partitions of 3 .

$$
D_{1^{3}}(q)=q^{3}, \quad D_{2^{1} 1^{1}}(q)=q^{2}+q, \quad D_{3^{1}}(q)=1 .
$$

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

For example, if $G=\mathrm{GL}_{3}$ and $\theta=\theta_{\alpha, \alpha, \alpha}$, then $W_{\theta} \simeq S_{3}$.
Recall: Irreducible representations of $S_{3} \longleftrightarrow$ Partitions of 3 .

$$
D_{1^{3}}(q)=q^{3}, \quad D_{2^{1} 1^{1}}(q)=q^{2}+q, \quad D_{3^{1}}(q)=1 .
$$

Then $W_{\theta} \simeq S_{3}$ has the Poincare polynomial
$\sum_{w \in S_{3}} q^{\operatorname{len}(w)}=q^{3}+2\left(q^{2}+q\right)+1$

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

For example, if $G=\mathrm{GL}_{3}$ and $\theta=\theta_{\alpha, \alpha, \alpha}$, then $W_{\theta} \simeq S_{3}$.
Recall: Irreducible representations of $S_{3} \longleftrightarrow$ Partitions of 3 .

$$
D_{1^{3}}(q)=q^{3}, \quad D_{2^{1} 1^{1}}(q)=q^{2}+q, \quad D_{3^{1}}(q)=1 .
$$

Then $W_{\theta} \simeq S_{3}$ has the Poincare polynomial
$\sum_{w \in S_{3}} q^{\operatorname{len}(w)}=q^{3}+2\left(q^{2}+q\right)+1=1 \cdot D_{1^{3}}(q)+2 \cdot D_{2^{1} 1^{1}}(q)+1 \cdot D_{3^{1}}(q)$.

Generic degrees

Each $\lambda \in \operatorname{Irr}\left(W_{\theta}\right)$ has an associated generic degree $D_{\lambda} \in \mathbb{Q}[q]$.
These capture important representation-theoretic data about the principal series representations $\mathcal{B}(\theta):=\operatorname{Ind}_{B\left(\mathbb{F}_{q}\right)}^{G\left(\mathbb{F}_{q}\right)} \theta$.

For example, if $G=\mathrm{GL}_{3}$ and $\theta=\theta_{\alpha, \alpha, \alpha}$, then $W_{\theta} \simeq S_{3}$.
Recall: Irreducible representations of $S_{3} \longleftrightarrow$ Partitions of 3 .

$$
D_{1^{3}}(q)=q^{3}, \quad D_{2^{1} 1^{1}}(q)=q^{2}+q, \quad D_{3^{1}}(q)=1 .
$$

Then $W_{\theta} \simeq S_{3}$ has the Poincare polynomial
$\sum_{w \in S_{3}} q^{\operatorname{len}(w)}=q^{3}+2\left(q^{2}+q\right)+1=1 \cdot D_{1^{3}}(q)+2 \cdot D_{2^{1} 1^{1}}(q)+1 \cdot D_{3^{1}}(q)$.
The coefficients tell you how $\mathcal{B}(\theta)$ decomposes!

$$
\mathcal{B}(\theta)=V_{1}^{\oplus 1} \oplus V_{2}^{\oplus 2} \oplus V_{3}^{\oplus 1}
$$

Results

Theorem [W., '22]
The E-polynomial for \mathbf{R} is:

Results

Theorem [W., '22]

The E-polynomial for \mathbf{R} is:
$\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\substack{L \in W \\ \text { refl. } \\ \text { subg. }}} \sum_{\zeta \in \operatorname{lrr}(L)} \operatorname{dim}(\zeta)\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right| P_{L}(q)}{P(q) D_{\zeta}(q)}\right)^{2 g-1} \sum_{\substack{\theta \in \operatorname{lr}\left(T\left(\mathbb{F}_{q}\right)\right) / W \\ W_{\theta}=L}} \theta(s)$.

Results

Theorem [W., '22]

The E-polynomial for \mathbf{R} is:
$\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\substack{L \subseteq W \\ \text { refl. } \\ \text { subgp }}} \sum_{\zeta \in \operatorname{lrr}(L)} \operatorname{dim}(\zeta)\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right| P_{L}(q)}{P(q) D_{\zeta}(q)}\right)^{2 g-1} \sum_{\substack{ \\\theta \in \operatorname{lrr}\left(T\left(\mathbb{F}_{q}\right)\right) / W \\ W_{\theta}=L}} \theta(s)$.
This broadens the current literature greatly - only three papers are known to deal with cases beyond GL_{n}.

Results

Theorem [W., '22]
The E-polynomial for \mathbf{R} is:
$\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\substack{L \in W \\ \text { refl. } \\ \text { subgp }}} \sum_{\zeta \in \operatorname{lrr}(L)} \operatorname{dim}(\zeta)\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right| P_{L}(q)}{P(q) D_{\zeta}(q)}\right)^{2 g-1} \sum_{\substack{ \\\theta \in \operatorname{lrr}\left(T\left(\mathbb{F}_{q}\right)\right) / W \\ W_{\theta}=L}} \theta(s)$.
This broadens the current literature greatly - only three papers are known to deal with cases beyond GL_{n}.
Theorem [Hausel, Letellier, Rodriguez-Villegas, '11]
Suppose that $G=G L_{n}$ and C is a 'generic' semisimple conjugacy class.

Results

Theorem [W., '22]

The E-polynomial for \mathbf{R} is:

$$
\left|C\left(\mathbb{F}_{q}\right)\right| \sum_{\substack{L \subseteq W \\ \text { refl. } \\ \text { subgp }}} \sum_{\zeta \in \operatorname{lrr}(L)} \operatorname{dim}(\zeta)\left(\frac{\left|G\left(\mathbb{F}_{q}\right)\right| P_{L}(q)}{P(q) D_{\zeta}(q)}\right)^{2 g-1} \sum_{\substack{\theta \in \operatorname{lrr}\left(T\left(\mathbb{F}_{q}\right)\right) / W \\ W_{\theta}=L}} \theta(s) .
$$

This broadens the current literature greatly - only three papers are known to deal with cases beyond GL_{n}.

Theorem [Hausel, Letellier, Rodriguez-Villegas, '11]
Suppose that $G=G L_{n}$ and C is a 'generic' semisimple conjugacy class. Then

$$
E(\mathbf{R} ; q)=q^{\frac{1}{2} d c} \frac{\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|}{\left|Z\left(\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right)\right|} \mathbb{H}_{C}\left(q^{1 / 2}, q^{-1 / 2}\right)
$$

$E(\mathbf{R} ; q)$

Going forward

References

[KNP] Arithmetic geometry of character varieties with regular monodromy, M. Kamgarpour, G. Nam, A. Puskás, 2022.
[Ball22] Intersection cohomology of character varieties for punctured Riemann surfaces, M. Ballandras, 2022.
[Cam17] On the E-polynomial of parabolic $S p_{2 n}$-character varieties, V. Cambò, 2017.
[HLRV] Arithmetic harmonic analysis on character and quiver varieties, T. Hausel, E. Letellier, F. Rodriguez-Villegas, 2012.
[HRV] Mixed Hodge polynomials of character varieties, T. Hausel, F. Rodriguez-Villegas, 2008.
[CFLO] Topology of Moduli Spaces of Free Group Representations in Real Reductive Groups, A. Casimiro, C. Florentino, S. Lawton, A. Oliveira, 2014.

