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For a Riemann surface X and a reductive group G, consider the

space of representations Hom(71(X), G) C G".

There's an action Hom(71(X), G) «\ G by conjugation.
~» We can quotient the representation space by G.
~~ We obtain the orbit space Hom(71(X), G)/G.

inequivalent reps.
{ 7r1(X) — G }
I
Hom(m1(X), G)//G

Riemann-Hilbert
correspondence

non-abelian
Hodge theory

Higgs:(X)//G LocSys¢(X)

—— — ———
gauge theory, sheaf cohomology,

integrable systems, flat connections,

mirror symmetry D-modules 1
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The representation variety

We need to define three pieces of data:

e X := once-punctured genus g > 0 compact orientable
Riemann surface, which has the fundamental group

= <X1aY1a---an,YgaZ> il — o — E) '
xi, 1] - X Yelz N

e G := reductive group (split conn., conn. centre) over Fy.
Think G = GL,,.

e C :=[s] = conjugacy class (s.s. and strongly regular) of G.
Think s = diag(si, ..., sn) with s; # s;.

The representation variety R(G, I, C) associated to this data is

R::{(xl,yh...,xg,yg,z)eG2g><C [xl,yl]...[xg,yg]z:l}. ,
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We want to understand the topology of the representation variety.
In particular, we seek an expression for the E-polynomial of R,
denoted E(R; x,y) € Z[x,y].

For a complex variety X, the E-polynomial E(X; x, y) carries an
abundunce of topological information:

(i) The dimension of X is half of the degree of E(X; x,y),
(i) The Euler characteristic of X is E(X;1,1),

(i) The # of (max'l dimension) irred. components of X is the
leading coefficient of E(X; x, y).
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Katz’ theorem

Theorem [Katz]

_ Moral [Katz]
Let X be a variety. Assume that

X(Fq)| = Px(q) for some polynomial JuTt ShO\.Nll?((IF?)\ 15
Px € Z[q]. Then E(X;x,y) = Px(xy). polynomial in ¢!

We may consider E as a function of one variable g = xy and write
E(X; q) = Px(q) instead. In this case, dim X = deg E(X; q).
For example,

GL2(Fq)| = ¢* — ¢° — ¢° + g = PaL,(q)

dimension = 4, Euler characteristic = 0,

no. of irred. components = 1.
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The Frobenius mass formula

Theorem [Frobenius 1896, Mednykh 1978]

2g—1
RE) = CE) 3 ('fﬂ‘;)') 6}

x€lre(G(Fg))

Understand mass formula Obtain |R(Fq)|
Irr(G(Fy)) and E(R; q)

This turns the problem of algebraic geometry into a problem of
representation theory.
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Theorems of Deligne-Lusztig, Curtis-lwahori-Kilmoyer and Tits tell
us that we need to look at:

e Stabiliser subgroups Wy, where W ~ 6 € Irr(T(Fg)), and

e The principal series representation Indgg;’g 0.
One of the maximal tori of G(Fq) = GL,(IF4) looks like
Fq
T(Fq) =
F;
whose characters look like
t
Oon,...com =a1(t) - an(ty), «; € Irr(IF;).
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Recollections of representation theory

The Weyl group W ~ S,, acts via permutating the «;’s:
0 bay,.ap = 6%(1) ----- Oy(n)*

So their stabilisers look like

~ Sy X -+ xXS,, wheren +---+n,=n.

The collection of all of these subgroups forms a lattice.

For GL3, this is iso. to the lattice of set-partitions of {1,2,3}:
{1,2,3}

{1,2}0{3} {230{1,3} {13u{2,3}

{1ru{2iu{3}
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Generic degrees

Each X € Irr(Wjy) has an associated generic degree Dy € Q|q].

These capture important representation-theoretic data about the
)

) 0.

For example, if G = GL3 and 0 = 0, oo, then Wy ~ S3.
Recall: Irreducible representations of S3 +— Partitions of 3.

Dis(q) =¢>, Dun(q)=q*+q, Dau(q)=1.

principal series representations B(6) := Indggg:

Then Wy ~ Sz has the Poincare polynomial

> 4" = *+2(¢*+q)+1 = 1-Dp3(q)+2-Dy1ya(q)+1- Dy (q)-

WES3
The coefficients tell you how B(6) decomposes!

B(0) = V' o Vi @ VP
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Theorem [W., ‘22]
The E-polynomial for R is:
P 2g—1
X 2 a0 Ghnm) 2,00

LCW ¢elrr(L ocir(T(Fq))/W

refl. Wy=L
subgp

This broadens the current literature greatly - only three papers are
known to deal with cases beyond GL,,.

Theorem [Hausel, Letellier, Rodriguez-Villegas, '11]
Suppose that G = GL,, and C is a 'generic’ semisimple conjugacy
class. Then

GLA(Fq)|

E(R:q) = > el F))l

HC(q1/2-, q71/2).
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Going forward

E(R;q)

G=reductive

Our

formula

G=GL, HLRV's
formula
1
?3// Conjecture
g _
Hodge polynomial
Conjectured H(R; X,y, t)
conjecture

10
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