The Representation Variety and its *E*-Polynomial

Bailey Whitbread Supervisors: Masoud Kamgarpour, Anna Puskas and Ole Warnaar

February 9, 2023

The Representation Variety

Figure 1: The once-punctured genus 3 compact orientable surface.

We want to understand the topology of the representation variety.

In particular, we seek an expression for the *E-polynomial* of **R**, which contains desired topological data, e.g. Euler characteristic, dimension, number of connected components.

We will do this by computing $|R(\mathbb{F}_q)|$, the number of \mathbb{F}_q -points of R:

$$\mathsf{R}(\mathbb{F}_q) := \left\{ \begin{matrix} A_1, B_1, \dots, A_g, B_g \in G(\mathbb{F}_q)^{2g}, \\ Z \in C(\mathbb{F}_q) \end{matrix} \middle| \left[A_1, B_1 \right] \dots \left[A_g, B_g \right] Z = 1 \right\}.$$

ullet $\Sigma_g:=$ once-punctured genus g compact orientable surface with fundamental group

$$\Gamma_g := \pi_1(\Sigma_g) = rac{\langle a_1, b_1, \ldots, a_g, b_g, z \rangle}{[a_1, b_1] \ldots [a_g, b_g] z}.$$

- $G = \text{reductive group (think } GL_n \text{ or a 'nice' subgroup)}.$
- C = [s] = semisimple regular split conjugacy class of G(think $s = \text{diag}(s_1, \dots, s_n)$ with $s_i \neq s_i$ for $i \neq j$).

The representation variety associated to this data is

$$\mathsf{R} := \bigg\{ (A_1, B_1, \ldots, A_g, B_g, Z) \in \mathit{G}^{2g} \times \mathit{C} \ \bigg| \ [A_1, B_1] \ldots [A_g, B_g] Z = 1 \bigg\}.$$

Theorem [Katz]

If **X** is an algebraic variety and $P_{\mathbf{X}} \in \mathbb{Z}[x]$ is a polynomial such that $|\mathbf{X}(\mathbb{F}_q)| = P_{\mathbf{X}}(q)$ then $P_{\mathbf{X}}$ is the *E*-polynomial of **X**.

Then computing the E-polynomial reduces to the problem of showing $|\mathbf{R}(\mathbb{F}_q)|$ is a polynomial in q, and explicitly computing this polynomial.

- Mixed Hodge polynomials of character varieties, with an appendix by Nicholas M. Katz, Tamas Hausel, Fernando Rodriguez-Villegas, https://arxiv.org/pdf/math/0612668.pdf, 2008.
- Arithmetic harmonic analysis on character and quiver varieties, Tamas Hausel, Emmanuel Letellier, Fernando Rodriguez-Villegas, https://arxiv.org/pdf/0810.2076.pdf, 2011.
- Arithmetic geometry of character varieties with regular monodromy, Masoud Kamgarpour, Gyeonghyeon Nam, Anna Puskas, unpublished.