The Representation Variety and its E-Polynomial

Bailey Whitbread
Supervisors: Masoud Kamgarpour,
Anna Puskas and Ole Warnaar
February 9, 2023



Figure 1: The once-punctured genus 3 compact orientable surface.

We want to understand the topology of the representation variety.
In particular, we seek an expression for the $E$-polynomial of $\mathbf{R}$, which contains desired topological data, e.g. Euler characteristic, dimension, number of connected components.
We will do this by computing $\left|\mathbf{R}\left(\mathbb{F}_{q}\right)\right|$, the number of $\mathbb{F}_{q}$-points of $\mathbf{R}$ :
$\mathbf{R}\left(\mathbb{F}_{q}\right):=\left\{\left.\begin{array}{c}A_{1}, B_{1}, \ldots, A_{g}, B_{g} \in G\left(\mathbb{F}_{q}\right)^{2 g}, \\ Z \in C\left(\mathbb{F}_{q}\right)\end{array} \right\rvert\,\left[A_{1}, B_{1}\right] \ldots\left[A_{g}, B_{g}\right] Z=1\right\}$.

- $\Sigma_{g}:=$ once-punctured genus $g$ compact orientable surface with fundamental group

$$
\Gamma_{g}:=\pi_{1}\left(\Sigma_{g}\right)=\frac{\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}, z\right\rangle}{\left[a_{1}, b_{1}\right] \ldots\left[a_{g}, b_{g}\right] z} .
$$

- $G=$ reductive group (think $G L_{n}$ or a 'nice' subgroup).
- $C=[s]=$ semisimple regular split conjugacy class of $G$ (think $s=\operatorname{diag}\left(s_{1}, \ldots, s_{n}\right)$ with $s_{i} \neq s_{j}$ for $i \neq j$ ).
The representation variety associated to this data is

$$
\mathbf{R}:=\left\{\left(A_{1}, B_{1}, \ldots, A_{g}, B_{g}, Z\right) \in G^{2 g} \times C \mid\left[A_{1}, B_{1}\right] \ldots\left[A_{g}, B_{g}\right] Z=1\right\} .
$$

## Theorem [Katz]

If $\mathbf{X}$ is an algebraic variety and $P_{\mathbf{X}} \in \mathbb{Z}[x]$ is a polynomial such that $\left|\mathbf{X}\left(\mathbb{F}_{q}\right)\right|=P_{\mathbf{X}}(q)$ then $P_{\mathbf{X}}$ is the $E$-polynomial of $\mathbf{X}$.

Then computing the $E$-polynomial reduces to the problem of showing $\left|\mathbb{R}\left(\mathbb{F}_{q}\right)\right|$ is a polynomial in $q$, and explicitly computing this polynomial.


- Mixed Hodge polynomials of character varieties, with an appendix by Nicholas M. Katz, Tamas Hausel, Fernando Rodriguez-Villegas, https://arxiv.org/pdf/math/0612668.pdf, 2008.
- Arithmetic harmonic analysis on character and quiver varieties, Tamas Hausel, Emmanuel Letellier, Fernando Rodriguez-Villegas, https://arxiv.org/pdf/0810.2076.pdf, 2011.
- Arithmetic geometry of character varieties with regular monodromy, Masoud Kamgarpour, Gyeonghyeon Nam, Anna Puskas, unpublished.

