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INTRODUCTION

Origins of group theory. The mathematical field of group theory has its origins in the early 19th century.
At the time, mathematicians were investigating the solutions to polynomial equations. That is, solutions
to equations of the form

Ly +a=0.

anT” + ap_12""
Full solutions to polynomial equations of low degrees (i.e. n < 4) had already been formulated [Rig96].
These include the familiar quadratic formula, which has been known since antiquity. The formula tells us

that the solutions to a general quadratic equation az? + bx + ¢ = 0 are given by

—b+ Vb2 —4ac
T = )
2a

The full solutions to any cubic (n = 3) or quartic (n = 4) polynomial equation were also known. These
are given by the lesser-known Cardano’s formula and Ferrari’s method, respectively. We say that a poly-
nomial is solvable by radicals if one can write all of its solutions in terms of its coefficients combined with the
algebraic operations; addition, subtraction, multiplication, division, powers and radicals (i.e. Ekth roots).

In the 1830s, the mathematician Evariste Galois provided an elegant method to prove that a general
polynomial of degree n > 5 is not solvable by radicals. Galois understood that to every polynomial one
could associate a Galois group, a new mathematical object at the time. The Galois group was the first
object in a class of mathematical objects that we call groups today. We say that the pair (G, o) is a group,
where G isasetand o: G x G — G is a binary operation on GG, when three conditions are satisfied:

e Associativity: go (hok) = (goh)okforall g,h,k € G.
o Existence of an identity: there exists some 1 € G such that lgog=golg =gforallg € G.
e Existence of inverses: for every g € G, there exists some g~ € G such that gog™! = g7 log = 1.

Examples of groups that are likely familiar to the reader include (Z, +), the integers under addition,
(RT, x), the positive real numbers under multiplication, and (Z/nZ, +), the integers modulo n under
addition. Some geometric examples of groups are the dihedral groups. These groups are generated by the
m symmetries associated to the regular m-sided polygon (i.e. a polygon with all interior angles and all
side lengths the same). Then each dihedral group contains 2m elements (m reflections and m rotations)
with the group operation of composition of reflections and rotations.

1 72 2

, reflection .

FiGure 1. The symmetries of a square and a reflection about the vertical line of symmetry.

This gives us an intuitive understanding of groups: they encode the symmetries of mathematical objects.
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What is representation theory? The study of groups yields insight into geometric objects. The action
of the dihedral group on the m-gon serves as example of a group acting on a geometric object. More
generally, we can consider the action of a group on some object. Specifically, we say that a group G acts
onaset X if, for each g € G, thereisamap -: G x X — X satisfying 1¢-z =z and g (h-z) = (gh) -z for
all z € X. Alternatively, one can view this as a group homomorphism p: G — Sym(X ), where Sym(X)
is the symmetric group associated to X, i.e. the group of permutations of elements of X.

Now we linearise the setting above by requiring that X = V is a vector space. Then we say that G acts
linearly on V if there exists a group homomorphism p: G — GL(V'). We call (V, p) a representation of G,
and p is often suppresed from notation. We see that G acts on V in the sense that p(g): V' — V is a linear
invertible map on V. We may denote p(g)(v) by g - v as before.

Representation theory is concerned with understanding and classifying linear actions of groups. The
general situation of representation theory is as follows. If the group G acts on a vector space V, then
we say that a vector subspace W C V is a subrepresentation of V if it is invariant under the action of
G. A representation is called irreducible if its only proper subrepresentation is the trivial representation
W = {0}. The primary goals of representation theory are finding all irreducible representations of G,
and to decompose a given representation into its irreducible components.

We can think of irreducible representations as the building blocks of all other representations. This is a
common idea in mathematics, seen in other areas. For instance, in number theory, the building blocks
of integers are primes and, in group theory, the building blocks of groups are simple groups.

Writing a general representation in terms of irreducible components is not always possible. We call a
representation decomposable if we can write it as the direct sum of irreducible representations. A lot can
be said about the case where the representation of a finite group is over a field whose characteristic
not dividing the order of the group. In this case, Maschke’s theorem tells us that these representations
are always decomposable [Lan02]. In particular, complex representations of a finite group are always
decomposable.

Gelfand Pairs. Henceforth, we assume some knowledge of abstract algebra from the reader. Let G be a
finite group and K < G a subgroup. The pair (G, K) is called a Gelfand pair if the induced representation
Ind$ 1 is multiplicity-free. Here 1 denotes the trivial (1-dimensional) complex representation of K, and
multiplicity-free means that any irreducible representation appears in the decomposition of Ind% 1 at
most once (up to isomorphism).

Gelfand pairs play an important role in representation theory [Mus93], analysis [ Kor80,Mor18], combi-
natorics [BI84], number theory [Gro91, Ter99] and probability [CSST20, Dia88]. One of our objectives is
to give a detailed study of Gelfand pairs of finite groups. A main theorem of this thesis is the following:

Theorem 1. (Gelfand’s Trick) Let G be a finite group and K a subgroup of G. Suppose ¢ : G — G is an involutive
anti-automorphism (i.e. a bijective anti-homomorphism) such that Kp(x)K = Kz K forall x € G. Then (G, K)
is a Gelfand pair.

The theorem above is proved using the Hecke algebra. There are multiple constructions of Hecke algebras
in the literature [CMHLO03, CSST20].
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Types of Hecke algebras. Another objective of this thesis is to present these a priori different Hecke
algebras and resolve their apparent discrepancies. For instance, one way to define the Hecke algebra is
as a convolution algebra of K-bi-invariant complex-valued functions f: G — C on a group. Another
way to define the Hecke algebra is as the algebra generated by n — 1 variables 77, ...T;,_1 subject to a
quadratic relation T? = (q — 1)T; + q and a braid relation

TTT;... =TTy ....
—— ~—_————
mi; terms m;; terms

Here m;; is the i entry in the Coxeter matrix associated to the Weyl group of G. The name ‘braid relation’
is due to a method of visualising the symmetric group S,,. If n is a positive integer then the group S, is the
collection of bijections on the set {1,2, ..., n} to itself, with the group operation of composing functions.
A natural method of visualising elements and multiplication in this group is via braid diagrams. For
instance, if o = (12)(354) and 7 = (124 6 5 3) are permutations in Sg (written in cycle notation), then
we may visualise these elements and their product 7o = (1 4)(5 6) in the following manner:

G Y

FiGure 2. A braid diagram visualising the multiplication 7o = (1 4)(5 6).

Why study Hecke algebras? The Hecke algebra arises naturally when one wishes to compute certain
irreducible representations of a group [RW21, CMHLO03]. Consider a finite group G and a normal sub-
group N <. If G acts linearly on a vector space V' (i.e. V is a representation of ), then there is a natural
action of G on the subrepresentation VN the space of vectors in V that are fixed by N. Under this action,
N will clearly act trivially on V. This yields a representation of the quotient group G//N. After some
representation theoretic arguments, one arrives at the conclusion that

Irreducible representations RER Irreducible representations
of G with N-fixed vectors of G/N '

It is a straightforward exercise that a complex representation of the group G/N is the same as a repre-
sentation of the algebra C[G//N], the group algebra of G/N.

What happens when we do not require a normal subgroup of G? Consider an arbitrary subgroup K of
a finite group G. Now G/ K is no longer necessarily a group, so G/K and C[G/K] no longer necessarily
make sense. We ask ourselves: what acts on V? The action of G on V is not well-defined on V¥ since
K is no longer normal. It is not obvious how we could study irreducible G-representations with K-fixed
vectors. We are able to salvage the situation with the help of the Hecke algebra.
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For g € G, define the Hecke operator [KgK]| := |Tl(| > rergr © € C[G], which acts on VE by
[KgK}'v::? Z x-v.

Now define the Hecke algebra (G, K) to be the space of functions f: G — C that are constant on K-
double cosets. The indicator functions x x4k form a basis of this space and we can uniquely associate
the indicator functions x ¢k to the Hecke operators [KgK|. We see that, through the Hecke operators,
we have defined an action of H(G, K) on VE. This answers our question of what acts on V. Through
another representation-theoretic exercise, one can conclude that

Irreducible representations EN Irreducible representations
of G with K-fixed vectors of H(G,K) '

An immediate example of the utility of this result is as follows. It is easy to show that if #(G, K) is com-
mutative, then all of its irreducible finite-dimensional representations are one-dimensional [EGH"11].
The commutativity of the Hecke algebra turns out to be an important property which will be investigated
throughout this thesis.

Contents of this thesis. In Chapter 1, we begin our study of the Hecke algebra. First, we investigate
the convolution algebra of all complex-valued functions on G and its ideal of K-right-invariant complex-
valued functions. This is followed by results describing the relationship between the induced represen-
tation and its associated Hecke algebra. We use these results to prove Theorem 1. This allows us to write
down simple proofs that Ind% 1 is multiplicity-free for certain choices of G' and K. Namely, (G, K) with
G commutative, (G, K) with [G: K] = 2, (Sy4m, Sn X Sm), and (Op41(Fy), O, (Fy)) for g odd.

In Chapter 2, we generalise the discussion of Chapter 1 to the case of a non-trivial character o: K — C*.
Here our goal is to obtain a twisted analogue of Theorem 1. To this end, we describe the basis of the Hecke
algebra using the idea of relevant orbits. We state and prove the generalisation of Theorem 1. We apply
the new theorem to a particular representation, the Gelfand—Graev representation of GL,,(FF,), to show that
it is multiplicity-free.

In Chapter 3, we investigate the Hecke algebra of Chapter 1 under the particular choice of G = SL,,(F,)
and K = B(F,), the Borel subgroup of G, i.e. the subgroup of upper-triangular matrices. The Weyl group
associated to G is introduced and shown to be isomorphic to S,,. Next, we perform some elementary
matrix calculations which yields the surprising result above: the Hecke algebra may be written in terms
of n — 1 generators subject to the quadratic relation and the braid relations associated to . This leads
to a concluding discussion of Hecke algebras generated by any finite Coxeter group.

In Chapter 4, we generalise the results of earlier chapters to the case where G is no longer finite, but
instead alocally compact topological group. This allows for an extension of the theory we have developed
to more general groups and their Hecke algebras. To do this, we discuss how one can impose a topological
structure on a group and supply examples to give some intuition for these types of groups. To define
Hecke algebras of these groups, we require some measure theory. In particular, the convolution product
on the Hecke algebra is defined in terms of an integral with respect to the Haar measure. We spend some
time developing the theory of Haar measures for this purpose. We conclude with a discussion of how to
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recover the Hecke algebra of a finite group from this new definition. In this chapter, we shall denote the
Hecke algebra by C.(K'\G/K) to emphasise the non-finiteness of G.

In Chapter 5, we take a look at some specific Hecke algebras of locally compact topological groups. In
particular, we restrict our attention to the general linear group over a non-archimedian local field k£ and
its ring of integers O. We look at the Spherical Hecke algebra, formed when one considers G' = GL,, (k) and
K = K° := GL,(0), and the Iwahori—Hecke algebra, formed when one considers G = GL,,(O) and K = I,
the Iwahori subgroup. In order to investigate these algebras, we must develop an understanding of these
fields. We detail their definition, classification and structure.

The contents of this thesis may be visualised with the following diagram.

Ch. 2 o1 Ch. 1 G finite Ch. 4 KT Ch.5
(G, K, 0) ==X 1(G, k) &8t o (\q/K) =L o (\G/I)
G Li
l ovg%lfe lK:KO
H(W,S)  CKO\G/K)
Ch.3 Ch.5

Ficure 3. The relationship diagram of this thesis.

Directions for future research. We assume the reader is familiar with the contents of this thesis. The
modern study of Hecke algebras is largely focused on the [wahori-Hecke algebra, which is also known
as the affine Hecke algebra. This algebra is central to the study of representations of reductive groups over
non-archimedian local fields (e.g. groups such as GL,,, SLy,, Sp,,, over fields such as Q, or [F,((2))).

Some topics relevant to the Iwahori—-Hecke algebra include Bernstein’s presentation, the Iwahori-Matsumoto
presentation and the Satake isomorphism [HKP09]. Properties of the Iwahori-Hecke algebra such as these
presentations may be viewed as a consequence of the universal unramified principal series module, which
we now describe.

Fix a “nice” (i.e. split and connected) reductive group G (e.g. SL,,) over a non-archimedian local field
k with ring of integers O. Then write A to mean a split maximal torus of G and write N to mean the
unipotent radical of a Borel subgroup of G that contains A. Also recall I is the Iwahori subgroup of G
given in Chapter 5.

The universal unramified principal series module M is given by C.(A(O)N\G/I). It is a right module
over the Iwahori-Hecke algebra under convolution. Furthermore, a basis of the Iwahori-Hecke algebra
is parameterised by the affine Weyl group W. We may write W = W x AV, where A is the coroot lattice of
G. Then C[A"] is the corresponding group algebra over C. Then M is also a left module over C[AY].






1. Hecke ALGEBRAS OF FINITE GROUPS

The aim of this chapter is to study the structure of the Hecke algebra and elucidate its significance in the
representation theory of G.

In Section 1.1, we introduce (Fun(G), x), the convolution algebra of functions from G to C. In Section
1.2, we present and discuss the induced representation Ind% 1 and its underlying vector space, W. In
Section 1.3, we introduce the Hecke algebra, (G, K). This is the space of functions that are constant on
K-double cosets. In Section 1.4, we present the group algebra C[G], which is isomorphic to Fun(G), and
describe the copies of W and #(G, K) that lie inside of C[G]. In Section 1.5, we make the fundamental
observation that #(G,K) = Endg(W), the endomorphism algebra of G-intertwiners on W. This is
crucial for the final section, Section 1.6, where we prove that a representation V' is multiplicity-free if and
only if Endg (V') is commutative. This lets us conclude that the induced representation W is multiplicity-
free if and only if its associated Hecke algebra is commutative.

The purpose of Section 1.7 is to develop a tool to expedite the process of proving H (G, K) is commutative.
This tool comes in the form of Gelfand’s Trick, which transforms the task of proving commutativity into
the task of writing down an involutive anti-automorphism of G that preserves K-double cosets. We will
see that this is a much easier task to perform. To prove Gelfand’s Trick, we investigate the behavior of
anti-automorphisms on G and Fun(G). As we do this, the required conditions for Gelfand’s Trick reveal
themselves, leading to a natural statement and proof. We conclude with some examples of applications
of the main theorem in Section 1.8.

1.1. The convolution algebra of functions Fun(G). Let X be a finite set. Denote the vector space of
complex-valued maps on X by Fun(X) := {f: X — C}. Ithas a basis of delta functions {0, },c x defined
by 0;(x) = 1and d,(y) = 0 for y # x. Note that Fun(X) is a commutative unital associative algebra under
pointwise multiplication of functions. Also note that if a group G acts on X, then G also acts on Fun(X)
by (g f)(z) := f(g~! - z). Thus, Fun(X) is a representation of G.

Now suppose that X = G is a finite group. The group structure on G yields a second algebra structure
on Fun(G). Specifically, it has the convolution product defined by

(f* @)= fly =Y flzg)f'(g7).
yz=x geG
One can show that « is associative with identity ¢;,,, so (Fun(G), ) is a unital associative algebra. It is
easy to see that this algebra is commutative if and only if G is commutative.

1.2. The induced representation Ind§ 1. Consider the space of functions in Fun(G) that are invariant
under right-multiplication by elements of K. Explicitly, this space is defined by

W:={f:G—C| flgk) = f(g9), Vg € G,Vk € K} C Fun(G).

Note that the action of G on Fun(G) leaves W invariant. The resulting action of G on W is called the
induced representation and denoted Ind% 1. When K = {1}, the representation Ind§, (13 1 = Fun(G) is the
left reqular representation of G. For future use, we prove the following lemma.

Lemma 2. The space W is a left ideal of (Fun(G), *).
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Proof. We verify that f xw € W whenever w € W and f € Fun(G). Letg € G and k € K. Then

(fxw)(gh) = Y fl@)w(y) =Y fl@)w(z""gk)

ry=gk zeG

=3 f@w@g) = fl@w(y) = (fxw)(g). O

zeG TY=9g

1.3. The Hecke algebra of a finite group #(G, K). Consider the space of functions in Fun(G) that are
invariant under right- and left-multiplication by elements of K. Explicitly, this space is defined by

H(G,K) :={f: G— C| f(kigke) = f(g9), Vg € G, Vk1,ke € K} C Fun(G).

This is the Hecke algebra associated to G and K and we will write H to mean #(G, K) when there is no
ambiguity. The proof of Lemma 2 can be adapted to show that A is a two-sided ideal in (Fun(G), *).
Notice that the identity of (Fun(G), x) does not lie in 7. Nevertheless, H does have an identity of its own.
It is easy to verify that the identity is ¢x, which we define below.

2+ ifgeK,

ik :G—=C, ig(g) = K
0, else.

We see that ¢ is an idempotent element, since (tx * tx)(g) = 0 for g ¢ K, and

(i * i) (k ZLK (kx)ig (z Z]KP:?

zeG zeK

fork ¢ K.

This is a special case of a more general situation: if R is a ring and e is an idempotent, then eRe will be a
ring in which e serves as a unit. This is clear since eree = ere = eere for all ere € eRe. The ring eRe is
sometimes called an idempotented ring or a Pierce corner [ Bum10, Lam03].

We present a basis for H. For KzK € K\G/K, the K-double cosets in G, we define

1, ifye KzK,
XKzK (y) =
0, else.
Recall that double cosets partition G so there is no ambiguity in this definition. We call x g« the char-
acteristic function of the K-double coset KxK. As an abuse of notation for the sake of brevity, we will
denote this family by { x, } e, where x ranges over the K-double coset representatives as written above.

It is not hard to see that the characteristic functions form a basis of H. By the definition of #, we see
characteristic functions span the space. To see that they're linearly independent, assume that
a1Xe; + o+ anXe, =0,

for some complete collection of K-double coset representatives z; € G and scalars «; € C. Here 0 denotes
the zero function g — 0 for all g € G. Evaluating both sides at z; tells us that a; = 0, so the only solution
is the trivial solution and we have linear independence.
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1.4. The group algebra C[G]. We can associate to G another algebra, C[G], called the group algebra of G

ageC}.

Clearly, the set {e, } ;e serves as a basis of this space. We endow the space with a multiplication defined

over C. This algebra is defined by

[

geG

on basis elements by ege, := egp. The following lemma illustrates the relevance of the group algebra.

Lemma 3. The map ®: Fun(G) — C[G] defined on basis elements by 6, — e, and extended linearly is an algebra
isomorphism.

Proof. By construction, ® is a linear map of vector spaces. It is also clear that this map is bijective since it
is a bijection on basis elements. Thus @ is a vector space isomorphism.

We need to check that ® respects the algebra multiplication. This amounts to verifying that d, x 65, = dgp,.
Notice that (dy x 05 )(z) = >y 0(a)dx (D) is equal to 1 when g = a and h = b, and 0 otherwise. This is
exactly dgp (). O

We may ask ourselves: what is the image of the induced representation and the Hecke algebra inside of
the group algebra? To answer this, we define the group algebra element

K| Z Ck-
keK
Note that e is an idempotent element. Then the following proposition answers our question.

Proposition 4. (i) (W) = C[Gle.
(ii) ®(H) = eC[Gle.

Proof. (i) Webegin by showing that C[G]e C ®(W). To see this, take an arbitrary element (3_ . ageg)e
in C[G]e. Then notice

1 1
Z ageqy Z ageqy Z er | = — Z agegll = — E ag€gk-
!K \ K| K|
€

keK

Then we apply ®~! to see that

1
‘K| Z AgCgk |K| Z agégk.

geG geG
keK keK

We wish to show that this lies in W, so we wish to check that this map is invariant under right-
multiplication by an element of K. To this end, let ¢’ € G, k' € K and apply ﬁ Y gec agdgr to g'K'.
keK
Note that 6,4 (¢'k") = 1if and only if gk = ¢k’ (and 0 otherwise). This is equivalent to g = ¢'k’'k .
Thus
|K| Zag gk gk |K‘ Z g’k”k 15’k’ gk |K‘ Z g’k’k 1.

keK keK
keK
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Similarly, we apply the map ﬁ > geg agdgr to ¢'. This yields

|K\Za“’“ |Z“”“

gelG keK
keK

Since right-multiplication by any element of K is an automorphism of G, we see that

T 2 et = g 2

keK keK
which shows that C[G]e C ®(WW). Conversely, take f = >
notice that

geG gdg € W. Letg' € G, k' € K and

agp = Z ags04(g'K') = f(d'k Z agbg(g) = ay.

geG geG
Then ay = ay for any ¢’ € G and k' € K. Then observe

1
O(fle= 2%59 ?Z k K Z agegr = K Zagk 1€g
K] 2) 7K - I
kEK

geG gelG
kGK
|K] Z ag€qg = Z Z Ag€g = K] Z o(f
geG keK 9eG keK
keK
Then ¢(f) = ¢(f)e € C[Gle, so ®(IW) C C[G]e as required.
(if) The proof is similar to that of (7). O

1.5. Identifying #(G, K) with the endomorphism algebra Endg(W). For any representation V' of G,
define the space of G-intertwining endomorphisms on V by

Endg(V):={f €End(V)|g- f(v) = f(g-v), VveV, g G} CEnd(V).

These are the endomorphisms of V' that respect the action of G on V. It is easy to see that this is a vector
space. It has the additional structure of a unital associative algebra when endowed with the product of
endomorphism composition.

Now set V to be W, the induced representation of the trivial character from K to G, and define the linear
map
U:H— End(W), a— (w— wx*a).

Lemma 2 tells us that w* o is indeed an element of W so the image of ¥ is indeed End (7). The following
proposition highlights the significance of this map.

Proposition 5. The map ¥ defines an algebra isomorphism H = Endg(W).

Proof. First we observe that ¥(«) is indeed a G-intertwiner. Given g, h € G and w € W, we have

(T(a)(g-w)(h) = ((g-w)xa)(h) = Y wlg 'w)aly) = Y wlg~'w)a(z""h)

zy=h zeG
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Thus, the image of ¥ lies in Endg (). Next, we check that ¥ is an algebra isomorphism. Let ay, 2 € H
and observe

U(ag *ag)(w) = wx (ap xaz) = (wrag) xae = U(ag)(w) xag = (P(ag) o U(ag))(w).
Thus ¥ is an algebra homomorphism. To see that ¥ is injective, we compute
ker U ={a e H|V(a)(w)=w}={a€eH|w*ra=w}={d,}

We see that ¥ has trivial kernel so it is injective. It is easy to see that surjectivity is a consequence of
Theorem 13 in [Mur05] which also contains its proof. O

1.6. Consequences for representation theory. We prove a general property of representations. Namely,
the decomposition of a representation is linked to its corresponding algebra of G-intertwining endomor-
phisms. We apply this to the induced representation W and Proposition 5 lets us conclude that W is
multiplicity-free if and only if H is commutative.

First, suppose that V' is a complex representation of G. Write V' = @;", V; as the decomposition of V
into irreducible constituents, using Maschke’s theorem. Notice that some of these V; may be isomorphic
to each other as G-representations. We group these mutually isomorphic irreducible representations
together by writing

n

v=@vi-@uen
=1

i=1
where m; is the number of times U; appears in the decomposition of V, henceforth referred to as the
multiplicity of U; in V. We say V' is multiplicity-free if m; = 1 for all i. The U;"™ are called the isotypical
components of V. We now prove the main proposition of this section.

Proposition 6. (i) If V is a representation of G with the decomposition into isotypical components as above,
then Endg(V) = @), Mat,,, (C).
(it) V is multiplicity-free if and only if Endg (V') is commutative.

Proof. (i) Observe that
Endg(V) =Homg(Vi ® - @V, Vi@ -0 V,) 2 @ Homg(V;,Vj).

ij=1,..,n

Then we compute
Homg (V;, Vj) = Homg (U™, U;ij) >~ Homg(U;, Uj) ™M
Schur’s lemma tells us that
C, if U; = Uj,
{0}, ifU; 2U;.

1

Home (U;, Uj)

Then Home (U;, U;)®™i™i = {0} if i # j and
Homg(Us, Up)®™ 2 €™ 2 Maty, (C).

Thus Endg(V) = @), Mat,, (C).
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(if) We know from (i) that we can identify Endg (V') with an algebra of block-diagonal matrices over C.
The sizes of the blocks correspond to m;, the multiplicity of U; in V. Composing two f, g € Endg(V)
corresponds to multiplying their associated matrices. Then Endg (V') is commutative if and only if
the block sizes are all 1. That is, if m; = 1 for all 7. O

Corollary 7. (i) The induced representation W is multiplicity-free if and only if its associated Hecke algebra H
is commutative.
(it) W is irreducible if and only if H = C.

Proof. (i) Apply Proposition 6 with V' = W. Then W is multiplicity-free if and only if Endg(W) is
commutative. Proposition 5 tells us that Endg(W) = H. Thus W is multiplicity-free if and only if
‘H is commutative.
(ii) Suppose that W is irreducible. Schur’s Lemma tells us that Endg(W) = C, so H = C. Conversely,
suppose that # = C. Write the decomposition of W into irreducible constituents

W= w
i=1
Schur’s lemma tells us that Endg(W;) = C for each i. Then
Endg(W) = Endg (@ m) @ Endg (W, @ C=cC"
i=1
However C = H = Endg(W) =2 C". Thus n = 1 and W is irreducible. O

1.7. Gelfand’s Trick. Our goal in this section is to prove the following theorem.

Theorem 8 (Gelfand'’s Trick). Suppose that G is a finite group and K < G is a subgroup. Let p: G — G be an
anti-automorphism with

(i) ¢*=1,and
(i) Ko(x)K = KzK forall x € G.

Then H(G, K) is commutative.

The key idea of this theorem is the following lemma.

Lemma 9. Let A be an algebra and B C A be a subalgebra with basis {b;}icr. Suppose F': A — A is an anti-
homomorphism (i.e. F(ajaz) = F(a2)F(a1)) and F(b;) = b;. Then B is commutative.

Proof. Since F is the identity on basis elements of B, there holds F|g = Idp. Let b;,b; € B be basis
elements and notice

bibj = F(bib;) = F(b;)F(b;) = bjb.

Then basis elements of B commute as desired. O

We employ Lemma 9 by applying it to the case where A = Fun(G) and B = H(G, K). Recall from Section

1.3 that the characteristic functions {x, }rcc form a basis of H(G, K).
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Corollary 10. Suppose F': Fun(G) — Fun(G) is an anti-homomorphism such that F(x,) = Xz forall z € X.
Then H(G, K) is commutative.

This gives us a clear direction going forward: we want to find such a map F.

Given an anti-homomorphism of groups ¢: G — G, we can consider the map ¢*: Fun(G) — Fun(G)
defined by ¢* f := f o ¢. This is the pullback of f by ¢. In general, ¢* is not an anti-homomorphism of
convolution algebras. For instance, consider G = Z/27Z = {0, 1} and the map ¢(z) = v+ = 0. Clearly ¢
is an anti-homomorphism. However, consider the maps f, g € Fun(G) given by f(z) = g(z) =0ifz =0
and f(z) = g(z) = 1if x = 1. Then

(" (f9)O0) = > f = > fla f(0)g(0) + f(1)g(1) = 1,

z+y=¢(0 z+y=0

((e*g) * (@ MNO) = > gle@)fe) = > g(0)f(0) = 2g(0)£(0) =0.

z+y=0 z+y=0
Thus ¢* is not an anti-homomorphism. However, when ¢ has the stronger anti-automorphism property,
we can say the same for p*. More precisely, we have the following lemma.

Lemma 11. Suppose ¢: G — G is a group anti-automorphism. Then ¢*: Fun(G) — Fun(G) is an algebra
anti-automorphism.

Proof. Let ¢ be a group anti-automorphism. Thus ¢ is a bijection and an anti-homomorphism. This lets
us write yz = x <= ¢(yz) = @(z) since ¢ is a bijection. We can also write ¢(yz) = ¢(z) <=
©(2)p(y) = ¢(x) since ¢ is an anti-homomorphism. Then we compute

(@ f)* (@ )@) = D (" Hly =Y fle 2)) =
Yyz=x Yz=T
S g flew) = D 9 = (¢ (gx (@),
p(2)e(y)=¢(z) 2y'=p(x)

Thus ¢*(g x ) = (¢*f) * (¢*g). We also need to check that ¢* is a bijection. We check this on the basis
elements {J,},cc of Fun(G). Let g, h € G and we compute

if g = p(h), , ifh =9 g),
(90*59)(h){1’ g =) {1 PO s ).

0, else. 0, else.

We see that ¢* sends d, to J,,-1(4). We know ¢ and ¢! are bijections on G, so ¢* acts bijectively on the

basis of Fun(G). O

Now we know that an anti-automorphism ¢ of G induces an anti-automorphism ¢* of Fun(G). We ask
ourselves: when does this anti-automorphism restrict to an anti-automorphism of H(G, K)? That is,
when is ¢* also an anti-automorphism of H (G, K)? The following lemma provides an answer.

Lemma 12. Suppose that ¢: G — G is an anti-automorphism. If p(K) = K then ©* restricts to an anti-
automorphism of H(G, K).
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Proof. Suppose f € H. Then notice
(" ) (k1gks) = f(p(kigk2)) = f(e(k2)e(g)e(k)) = f(kayp(g)k1) = fe(g)) = (¢ f)(g).

Thus ¢* f € H since it’s constant on K-double cosets. 0

Now we explore the effect of ¢* on the basis elements {x; }zcq of H(G, K).

Lemma 13. Suppose p: G — G is an anti-automorphism. If o> = 1 and Kp(z)K = Kz K forall x € G, then
P Xz = Xa-

Before we present the proof, notice that p(K) = K is a consequence of the assumption that Ko (z)K =
KzK for all z € G. This assumption implies that Kp(x)K = Kz K for all z € K, which in turn implies
that ¢(K) = K.

Proof. First, if g € Kz K, then
¢(9) € p(KzK) = o(K)p(2)p(K) = Kp(z)K = Kz K.
On the other hand, if p(g) € Kz K, then

9=v(p(9) € p(KzK) = p(K)p(2)p(K) = Kp(z)K = KzK.

We see that g € Kz K if and only if ¢(g) € K2 K. Then we compute

Xz (9)- O

0, else. 0, else.

(0" x2)(9) = xal(9)) = {1’ fiolg) € KoK, _ {1’ ifg € Kok, _

We are now ready to prove Theorem 8.

Proof of Theorem 8. Lemma 13 tells us that ¢* is the identity on the characteristic functions x,. These are
the basis elements of H (G, K). Since ¢ is an anti-automorphism, ¢* will be too. We apply Corollary 10
with F' = ¢* to see that the basis elements commute. Thus (G, K) is commutative. O

Lor o(z) = 2! (the latter of which is

When applying Gelfand’s Trick, we will often consider p(z) = 2~
understood as the transpose map when G is a matrix group). Itis easy to see that they are both involutive
anti-automorphisms, so the condition K¢(z)K = Kz K for all z € G will be the only condition left to

verify.

1.8. Gelfand pairs. We say that a pair of groups (G, K) with K < G is a Gelfand pair if Ind% 1 is
multiplicity-free. To be a Gelfand pair, it is sufficient to find an anti-automorphism satisfying the condi-
tions of Theorem 8. We present some examples of applications of this technique.

1.8.1. Example: (G, K) with G abelian. For any abelian group G, the identity map ¢(g) = g is an anti-
automorphism. This map clearly satisfies ¢? = 1 and Ky(z)K = Kz K forall x € G.
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1.8.2. Example: (G, K) with |G : K| = 2. The condition [G: K] = 2 tells us that K is a normal subgroup
of G. Thus, the quotient group G/K is defined and contains two cosets, K and G — K. Consider the
involutive anti-automorphism ¢(g) = g~'. We verify that double cosets are preserved. If z € K, then
Kp(r)K = Kx 'K = K = KxK. On the other hand, if z € G — K, then K¢(2)K = Kz 'K = G\ K =
Kz K. We see that K¢(z) K = Kz K in all cases.

1.8.3. Example: (G x G,G). We can embed the group G inside G x G by the injective map g — (g, g).
Then it makes sense to consider G as a subgroup of G x G. We apply Gelfand’s Trick with the involutive
anti-automorphism ¢ (g1, g2) = (g1,92) "' = (97 L g5 1). There holds

Go(g1,92)G = {(hgy 'k, hgy 'k) | h, k € G}
={(k" gth "k gk T ok € GY = {(zq1y, xg2y) | 2,y € G} = G(g1, 92)G.

We see that ¢ preserves double cosets and we have a Gelfand pair.

1.8.4. Example: (Sy+m,Sn % Sm). We present an original proof, but one may also see [Bum13] for an
alternate proof. The group S,, x S,, can be embedded inside S, 1., by taking w = (w1, w2) € Sy, X Sp,
and forming an element of S,, 1, by having w; act on the first n elements of {1,2,...,n +m} and having
wy act on the last m elements of {1,2,...,n+ m}.

Consider the involutive anti-automorphism p(w) = w™~!. We must verify that K p(w)K = KwK for each
double coset. If w € K, then Ko(w)K = Kw 'K = K = KwK so all that is left is to verify double cosets
are preserved for w € G — K.

We wish to show that Kw 'K € KwK and KwK C Kw !'K. Note that it suffices to show only one of
these. We will show that Kw™ 'K C KwK. Again, note that it suffices to show that w™t € KwK. This is
equivalent to showing that w™! = kywk, for some ky, ks € K. This equation is equivalent to k5 U — wkiw.
Then it suffices to show that wkw € K for some k € K.

We calli € {1,...,n + m} a crossing point of w if one of two mutually exclusive conditions hold: i €
{1,...,n}and w(i) € {n+1,...,n+m},ori € {n+1,...,n+m}and w(i) € {1,...,n}. Notice that the
number of crossing points in {1,...,n} must equal the number of crossing pointsin {n +1,...,n+ m}
since w is a bijection. Then there is a bijection f: {crossing points < n} — {crossing points > n}. This
yields two other bijections g: {1, ...,n}—{crossing points < n} — {1,...,n}—w({crossing points > n})
and h: {n +1,...,n+ m} — {crossing points > n} — {n+1,...,n + m} — w({crossing points < n}).
Define k € Sp4m by
f(@), if i < n is a crossing point,
bw(i)) = fil(z'), 1fz >n ?s a crossing Point, |

g(1), if ¢ < n is not a crossing point,

h(7), if ¢ > n is not a crossing point.

It is easy to check that £ and wkw lie in K as desired.
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1.8.5. Example: (Op+1(F,), On(F,)) with g # 2. We can embed the group O,,(F,) inside O,,11(F,;) by the

injection

0 1

= z~!. We verify that ¢ preserves double cosets.

On(Fy) = Opsr(F,), Aws (A 0) .

Consider the involutive anti-automorphism p(z) = z*

First note, for any group G and subgroup H, the action of G on G/H by left translation gives rise to
an action of G on G/H x G/H. The orbits of this action are the double cosets H\G/H. This yields an
identification of H\G/H with G\(G/H x G/H). Explicitly, the identification is given by (g1 H, g2H) —
Hg195 'q.

Notice that G/H := Oy41(F;)/ O, (F,) is isomorphic to the unit sphere. Given the previous discussion,

it suffices to show that, given two unit vectors u,v € R", there exists g € O, (F,) with g(u) = v and

g(v) = u, since the transpose map sends (u, v) to (v, u). If u — v is not orthogonal to itself, take g to be the
2(u—v,z)

reflection relative to the hyperplane orthogonal to u —v. More specifically, set g(x) := = — Ta—vu—0) (u—w).
Then

v P
9 = T T T R L P = 2wy Y e ) =

u—v,v u,v) — ’U2
g(v):v—u(u—v):v— 2{u, v) — 2v] (u—v)=v+(u—v)=u

(u—v,u—v) Jull> + o] = 2(u, v)
If u — v is orthogonal to itself, this tells us that 0 = (u — v,u — v) = ||ul|® + ||v]|* — (u,v) = 2 — 2(u,v) so

(u,v) = 1. Then (u + v,u + v) = 4 so u + v is not orthgonal to itself, and we take g to be the reflection

relative to v 4+ v. That is, g(z) := %(u—i—v) — x. Then
2 2||u||?
2 2||v||?
g(v):m(u+v)_v:W(““L”)_U:(UJW)—U:U-



17

2. Twistep Hecke ALGEBRAS OF FINITE GROUPS

We have now completed our investigation of the Hecke algebra 7 (G, K). The aim of this section is to
generalise the results of Chapter 1 to the case of a non-trivial character 0: K — C*. Here the Hecke
algebra H = H(G, K, o) is the convolution algebra of (K, o)-bi-invariant functions on G. In Section 2.1,
we discuss the theory of the induced representation Ind%- 0. In Section 2.2, we revisit the Hecke algebra,
identify its identity and describe its basis. Notice that the results of Section 1.4 and Section 1.5 were
independent of the choice o = 1, so they still apply now that we are considering a non-trivial character.

In Section 2.3, we generalise Gelfand’s Trick from Section 1.7 to the case of a non-trivial character o.
Naturally, we will need to reconsider the conditions that the anti-automorphism ¢: G — G must satisfy.
As in Section 1.7, we will investigate these conditions and conclude with a natural statement and proof of
Gelfand’s Trick in the twisted case. We conclude with Section 2.4, in which we investigate the Gelfand-
Graev representation and use the results of this chapter to prove that it is multiplicity-free.

2.1. The induced representation Ind% . Suppose that o: K — C* is a character, i.e. a group homo-
morphism. Consider the space

W:={f:G—C| f(gk) = f(g9)o(k), Yg € G,Yk € K} C Fun(G).

As in the previous section, W is called the induced representation and denoted Ind% o. We state and
prove a lemma analogous to Lemma 2.

Lemma 14. W is a left ideal of (Fun(G), *).
Proof. We verify that f xw € W whenever w € W and f € Fun(G). Letg € G and k € K. Then

(fxw)(gh) = > fl@w(y) =) f@w gk)=>Y_ fl@)w(x 'g)o(k)

ry=gk zeG zelG
- | Z r@uteo|ot = | T r@um)]om) = (= ugath. O
zeG Y=g

2.2. The twisted Hecke algebra of a finite group 7 (G, K, o). The Hecke algebra # = H(G, K, 0) is the
space

H:={f: G— C| f(kigks) = o(k1)f(g9)o(k2), Vg € G, Vk1,ks € K} C Fun(G).
The proof of Lemma 14 can be adapted to show that H is a two-sided ideal in (Fun(G), x). As before, the
identity of (Fun(G), x) does not lie in #. Nevertheless,  does have an identity of its own. It is easy to
verify that the identity is ¢, which we define below.
ﬁa(g), ifge K,

5 G—=C, 1%(g) = {O |
, else.

Thus, (#, *) is a unital associative algebra in its own right.

We now construct a basis for 7{. Recall that when o = 1, the basis of # was described by the characteristic
functions of K-double cosets. To treat the case when o # 1, we need a lemma about group actions.
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Consider the finite group K acting on a set X. For each z € X, let O, := {g -z | ¢ € G} be the orbit
containing = and let K, := {k € K | k-2 = x} be the stabiliser subgroup of z in K (also denoted as
stabg (z)). Consider the vector space

Vi={f: X>C|f(k-z)=0(k)f(x), Vk € K, Vz € X} C Fun(X).
An orbit O, is called (K, o)-relevant if there exists f € V such that f|p, is non-zero. Otherwise, we say

O, is (K, o)-irrelevant. We omit mention of (K, o) if it is clear from the context.

Lemma 15. An orbit O, is (K, o)-relevant if and only if o(K5) = {1}.

Proof. Assume that o(K,) # {1}. Then there exists k € K, such that o(k) # 1. Now recall that for f € V
we have f(z) = f(k-z) = o(k)f(x). However o(k) # 1, so f(x) = 0. Then f must be zero on O, and O,
is irrelevant.

Conversely, the fact that o is trivial on K, implies that it factors through a well-defined function o, : O, ~
K/K, — C given by 0,(kK;) := o(k). To see that this function is well-defined, suppose that k1 K, =
koK. Then klkz_l € K. Since o is trivial on K, we know 1 = a(klkz_l) = o(k1)o(k2)~!. Then o(k;) =
o (k) s0 04 (k1 Ky) = 04(koKy). It is easy to check that o, € V. Thus, O, is relevant. O

Now suppose K is a subgroup of G acting on X = G from the left and right by translation. Then the
orbit O, is nothing but the double coset Kz K and V becomes the Hecke algebra 7. Explicitly, we have

H = {f X —-C ‘ f(k‘l c X k‘g) = O'(k‘l)f(l‘)O'(kQ), Vki,ko € K, Vx € X} - Fun(X)

We can re-write this data by considering the left action of K x K°P on X, where K°P is the group opposite
to K. Then

H = {f X —C ‘ f((kl,kQ) . :B) = J(kl)a(kQ)f(iL‘), Vkl,kg S K, Vx € X} C Fun(X).

A double coset Kz K is relevant if it supports a non-zero function from #. Let X, be a family of relevant
coset representatives. Define the family of functions {x, }zcx,,, by

W) o(k)o(k), ifye KeK withy = kxk/,

Xz\Y) =
0, ify ¢ KzK.

One easily checks that x, is well-defined. We call x, a twisted characteristic function associated to the

relevant orbit KxK. When o = 1, every orbit is relevant and o(k)o (k') = 1, so we obtain the original
characteristic functions described in Section 1.3. Define the map

oo: Kx K —C*xC*, (6cKo)(ki,ks) = (o(k1),0(ks)).

As a result of Lemma 15, we see that an orbit under the left action of K x K°P is relevant if and only
if (0 W o)(stabgxx(z)) = {1}. Asin Section 1.3, it is not difficult to see that the twisted characteristic
functions of relevant orbits form a basis of H(G, K, o).
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2.3. Twisted Gelfand’s Trick. Our goal in this section is to prove the twisted analogue of Gelfand’s
Trick.

Theorem 16 (Twisted Gelfand’s Trick). Suppose that G is a finite group with K < G as a subgroup and
character 0: K — C*. Let p: G — G be an anti-automorphism such that

(1) ¢
(if) w(K ) K,
(iii) o(p(k)) = o(k) forall k € K, and
(iv) ¢(z) =z forall x € X,e1, a family of representatives for the (K, o)-relevant K-double cosets.

Then H(G, K, o) is commutative.

This is a true generalisation of Theorem 8. Indeed, if we consider the trivial representation o = 1, con-
dition (iii) is trivially satisfied, condition (iv) corresponds to the requirement that K¢(z)K = Kz K in
Theorem 8, and condition (if) is contained in the requirement that Ko(2)K = Kz K.

As in Section 2.1, the proof of Theorem 16 relies on the observation that an anti-homomorphism of an
algebra that acts as the identity on basis elements of the subalgebra is sufficient to conclude that the
subalgebra is commutative (c.f. Lemma 9 and Corollary 7). This leaves us with a question: can we
rewrite the condition p*x, = x,?

Recall that X, denotes a family of representatives for the relevant double cosets. Recall the twisted
characteristic functions {xz }zcx,., defined in Section 2.2 given by

o(k)o(k'), ifye KaK withy = kak/,
0, ify ¢ KaK.

Thus,
o(k)o(k), ife(g) € KxK with p(g) = kak/,

(" xz)(9) = {
0, else.

If o: G — G is an involutive homomorphism, then p(g) = kzk’ is equivalent to g = ¢ (k') p(x)¢(k). If we
further suppose that ¢(z) = x for all z € X,¢ and ¢(K) = K, then g = ¢(k')p(x)p(k) is equivalent to
= p(K)xp(k). Thus,

. _Jole(K)o(p(k)), ifge KaK with g = @(K)zp(k),
(¥"x2)(9) =
0, else.

This tells us that ¢*x is also supported (i.e. non-zero) on Kz K. Now let’s also assume that o(¢(k)) =
o(k) for all k € K. Then we can easily verify that ¢*x, € H(G, K, o). So ¢*x, must be a multiple of x,.
In fact, this multiple is 1, since

(P"X2) () = Xxa(p(7)) = Xa(2) = 1.

We are now ready to prove Theorem 16.

Proof of Theorem 16. Suppose that ¢: G — G is an anti-automorphism. Also suppose that p? = 1, p(K) =
K,o(p(k)) =o(k) forall k € K, and p(x) = z for all x € X,). The above discussion tells us that p*y, =
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Xz- These are the basis elements of (G, K,0). We apply Corollary 10 to conclude that #(G, K, o) is
commutative. 0

2.4. The Gelfand—Graev representation. We construct the Gelfand—Graev representation of G = GL,,(F,).
First, consider the unipotent radical of G, given by

1 F, F,
0 1 :
U(Fq) =
1 F,
0 0 1

Next, fix a non-trivial additive character ¢: F, — C* (i.e. ¢¥(a + b) = ¥(a)®(b)). Then define a character
m: U(Fy) — C* by

m(z) == Y(x12 + 223+ -+ Tp—1n).
To see that 7 is a character, observe

( ) w((ﬂfy (fﬁy)23 +-e (xy)nfl,n)

n—1

n—1
T1kYk2 + Z TokYks + -+ Z fEn—l,kykn)
k=1

(B r 2
(2

-1 n—1 n—1
1kyk:2> ( > $2kyk3> r < > :vn_1,ky/m>
k=1 k=1

(8

($12 +y12)Y(r23 + y23) -V (Tn—1,0 + Yn—1,n)
(z12)9 (y12) Y (223) P (y23) - - - Y (Tn—1,0)Y (Yn—1,n)
(12)Y(w23) - - Y(Tn—1,0) ¥ (Y12) Y (y23) - - - P (Yn—1,n)
(@12 4+ Tn-10)Y W12+ + Yn10)

(@)m(y).

The Gelfand-Graev representation of G is Ind§ «r. In [Bum13], Bump explains, “this Gelfand-Graev repre-
sentation is important because it contains most irreducible representations of the group; those it contains

G
G
Y
Y

<

3

are therefore called generic.” Furthermore, we have the following theorem.

Theorem 17. The Gelfand—Graev representation is multiplicity-free. That is, (GLy(F,), U(FFy), ) is a twisted
Gelfand pair.

This theorem will be proven in two parts. We begin with a lemma.
Lemma 18. (i) We have the Bruhat decomposition
F,) = | | BwB,
weWw

where W is the group of all n x n permutation matrices and B is the subgroup of all n x n upper-triangular
matrices.
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(if) We can modify the Bruhat decomposition and write

GL,(Fy) = | | UmT,
meM
where M is the group of all n x n monomial matrices. A monomial matrix is a matrix with exactly one
non-zero element in each row and column.

Before we prove Lemma 18, we recall a simple fact about matrices. Define x;;(t) := Ixn + tE;j, where
1 <i < j < nand Ej; is the matrix of 0’s except for a 1 in the it row and j™ column. Notice that z;j(t) € B
since ¢ < j. We can achieve the usual row and column operations on a matrix A by multiplying on the
left or the right by some z;;(t). The following makes this statement precise.

Right-multiplying A by x;;(t) corresponds to the column operation of C; — C;+tC;, where C}, is column
k of A. Similarly, left-multiplying A by x;;(t) corresponds to the row operation of R; — R; + tR;, where
Ry, is row k of A. Right-multiplying A by z;;(A — 1) corresponds to the column operation C; — ACj, for
some scalar \. Similarly, left-multiplying A by x;;(A — 1) corresponds to the row operation R; — AR;. We
see that we can perform the usual row and column operations by right- and left-multiplying by elements
of B.

Proof of Lemma 18. We begin by proving that GL,,(F,) = U,,cy BwB and will prove disjointness of the
union later. We proceed by induction. The n = 1 case is clearly true since all matrices in GL{(F,) are
upper-triangular. Now let n > 1 and g € GL,,(F,). We wish to find a permutation matrix w in BgB. We
have two cases: g, 1 # 0 and g,,1 = 0.

In the first case, the previous discussion tells us that we can multiply g on the left and the right by
appropriate elements of B so that the resulting matrix has zeros in the left column and bottom row,
except for the bottom left entry, which is g,, 1. This is non-zero so we can normalise this resulting matrix
by gn,1 to yield (99'). Here ¢’ lies in GLy,_1(F,). The inductive hypothesis that the n — 1 is true tells us
that ¢’ lies in a double coset Bw'B for some (n — 1) x (n — 1) permutation matrix w’. Then the desired w
is obtained by setting w = (9%').

In the second case, choose g;1 # 0 and g,,; # 0 so that i is as large as possible and j is as small as possible.
This amounts to choosing the two non-zero entries in the left column and bottom row that are closest to
the bottom left entry. Left- and right-multiplication by appropriate elements of B yields a matrix whose
first and jth columns and ith and last rows are empty, except the entries g;; and g,;. Since these entries
are non-zero, we can normalise these to 1 as well. Now we apply the inductive hypothesis to the matrix
obtained by removing these two rows and two columns. We are left with a permutation matrix and this
completes the induction.

We verify that the union is disjoint. Let w, w2 € W be representatives for the same double coset. Then
Bw;B = BwyB and, given any b € B, there exists b’ € B with wibw,' = V. In particular, wiw; ' €
BnNW = {1}. Thus w; = wa.

We now prove the modified decomposition. Consider the subgroup 7" of diagonal matrices in GL,,(F,).
Notice that B = TU = UT and M = TW = WT so the result follows from the regular Bruhat decompo-
sition. Disjointness is proven as before. O
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Proof of Theorem 17. Consider the involutive anti-automorphism ¢: G — G defined by

1
(P(g) = wogtwo, where wo =
1

We verify that Up(g)U = UgU for all g € G. For each double coset UgU, we will show that UgU has a
certain coset representative ¢’ with ¢(¢’') = ¢/, or f(g) = 0forall f € H.

The modification of the Bruhat decomposition in Lemma 18 tells us that UgU = UmU for some monomial
matrix m. Let f € H be non-vanishing on UmU. Thatis, f(m) # 0. We show that m has the form

D,
Do

D,

for some diagonal matrices Dj,...,D,. Equivalently, we show that if m;; and m; ; are non-zero, then
we must have k < j + 1.

To see this, assume that m;;,m;y1 1 # 0 and k > j + 1. Then define z := I,, + m;;jE; ;41 € U and y :=
I, + mi1 Eji € U. Simple computations tell us that xm = m + myjmi pei = my, m(x) = p(my;) # 1
and 7(y) = 7(0) = 1. Then, since f € H, there holds 7(x)f(m) = f(am) = f(my) = f(m)n(y). Thus
(7(2) — (1)) f(m) = 0,50 f(m) = 0 since (x) # m(y).

Now we show that each diagonal matrix D; is actually a matrix of scalars. In particular, we show that if
m; j and m;41 j11 are non-zero then they are equal. Consider = and y as given above, with k = j+1. Then
xm = my, 7(z) = Y(myj), 7(y) = Y(Mit1,4+1) and (7(z) — 7(y))f(m) = 0. Recall that f doesn’t vanish
on UmU so f(m) # 0. Thus 7(z) = 7(y), which tells us that )(m;;) = ¥ (mit1j+1) and m;; = mip1 j+1
by injectivity of .

Finally, notice ¢(m) = m. This is easy to see, since m! is simply m with the elements on the opposite diag-
onal reversed, and left- and right-multiplying by wy also reverses the opposite diagonal. This completes
the proof. O
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3. Hecke ALGEBRAS GENERATED BY A COXETER GROUP

The purpose of this section is to investigate the Hecke algebra obtained when we choose G = SL,,(F,)
and K = B(F,), the Borel subgroup of G, i.e. the subgroup of upper-triangular matrices in G. For this
chapter, our convolution product associated to H is modified with a normalising factor ‘%‘. We begin in
Section 3.1 by investigating the Weyl group of G. We give its general definition and show that it reduces
to the symmetric group S,, for our purposes. Next, in Section 3.2, we thoroughly describe the algebra
H(G, B) in the simple case of G = SLa(IF;). We move to the more difficult cases of G = SL3(F,) and
G = SL4(F,) in Sections 3.3 and 3.4 respectively. These examples lead us to the definition of a Coxeter
group, given in Section 3.5. This chapter is concluded with the definition of a Hecke algebra of a finite
Coxeter group and a complete description of #(G, B) in the general case. This is done so in Section 3.6.

3.1. The Weyl group V. Fix the group G = GL,(F,). Consider the subgroup of diagonal matrices
T := {diag(a1,...,a,) |a; € F} € G.

This is a maximal torus of G. The Weyl group of G is defined as the quotient group W := Ng(T")/T, where
Ng(T) = {t € T | gTg~! = T} is the normaliser of T in G. The Weyl group may be understood as
the reflection group of the root system associated to a Lie group G. It is a useful fact in [BD85] that all
maximal tori are conjugate to each other over the algebraic closure of F,. As a result, W is independent
of the choice of maximal tori, so we only need to consider the one we have chosen.

Our goal in this section is to show that W = S,,. To do this, we need a lemma.

Lemma 19. N (T) is the set of monomial matrices in G.

Before we prove the lemma, we need a definition and a small fact about matrices. The spectrum of a
matrix is the multiset of its eigenvalues. The fact we need is that conjugation preserves the spectrum of a
matrix. More specifically, for any A, B € G, the spectrums of A and BAB™! coincide. To see this, notice

det(BAB™' — A\I) = det(BAB™' — ABB™!) = det(B) det(A — M) det(B™1) = det(A — \I).

We see that A and BAB™! have the same characteristic polynomial which proves the fact.

Proof of Lemma 19. First, we show that the monomial matrices lie in Ng(T'). To see this, fix a monomial
matrix p = Y1 a;E; ,(;) for some o € S,,. It is not difficult to see thatp™' = 37", ai_leq(i). To verify
this, one can compute (pp~1);; = d;j, so pp~! = I. Now, take an arbitrary element t = >, b;E;; € T.
We compute

n n

(ptp i = Y _ (i@ kg = (ZZM%) (0 ks = D> vt iy
=1

k=1 k=1 \i= k=1 I=1
Notice p;; is non-zero if and only if [ = o(4), tj;, is non-zero if and only if | = k and (pfl)kj is non-zero if
and only if j = o7 1(k). Then (ptp~!);; is non-zero if and only if (i) = o(j), i.e. i = j. Thus, ptp~! = ¢/

and pt = t'p for some diagonal matrix ¢’ € T. This means p normalizes 7" in G.

Conversely, we show that a normaliser of 7' in G must be a monomial matrix. Let s € Ng(T). By
definition of the normaliser, we know sts™! is a diagonal matrix for each t € T. Choose t = Y 1 | iEj;.
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Then sts~! = w for some w € T. The matrix ¢ clearly has the spectrum {1,...,n} and we know that
conjugation preserves the spectrum, so sts~! = w has the same spectrum, up to permutation. We write
w =" 0(i)E; for some ¢ € S,, permuting the spectrum of t. The equation sts~! = w tells us that
st —ws = 0. We compute
n n
(st)ij = Z Siklk; = Jsij,  (ws)ij = Zwikskj = o (i)sij.
k=1 k=1

We put this together and see that

0= (st —ws)ij = (st)ij — (ws)ij = jsij — o (i)sij = si5(j — (7))

This tells us that s;; must be 0 if j # o(7) and s;; can be arbitrary when j = o (7). This is exactly what it
means for s to be a monomial matrix associated to o. O

Proposition 20. Ng(T')/T = S,.

Proof. Consider the map f: Ng(T') — G defined on matrix entries by

1, ifgy #0,

(f(9)ij = 0, ifgi=0.

This sends the non-zero entries of g € N(T') to 1. Notice this is a group homomorphism with ker f = T'
and im f = {permutation matrices} C G. Here a permutation matrix is a monomial matrix with its
non-zero entries all equal to 1. The group of permutation matrices is isomorphic to S,,. Thus, the first
isomorphism theorem tells us that Ng(T')/T = S,,. O

The above proof can be followed for the choice G = SL,,(IF;) to see that its Weyl group is also S,,. Then,
similarly to Lemma 18, we see that SL,,(F,) has its own Bruhat decomposition in terms of S,,. This is
explicitly proven in [ Bum13].

3.2. A simple case, G = SLy(F,;). We investigate the structure of the Hecke algebra 7 (G, K) when
G = SLy(F,) and K = B(F,). Recall the Hecke algebra #(G,B) = {f: G — C | f(bgt') = f(9)}. How-
ever, instead of the convolution product used throughout Chapter 1, we define the normalised convolution
product

frg)(x): fly

( = {5 2 s
Notice that this normalising factor only affects the identity in H. Specifically, it rescales the identity. In
Section 1.3, we saw that #(G, K) has the identity ¢x. Under the normalised convolution product, it is
easy to see that H (G, B) has identity x p, the characteristic function of B.

Consider the symmetric group S; = {1, s}. Note that s may be represented by the permutation matrix
(9¢)- However, this has determinant —1 so it is not an element of SLy(F, ). However, we can swap a non-
zero element from 1 to —1 so that s has the permutation matrix ( %, §) with determinant 1. In general,
given the natural map n: Ng(T') — N¢(T)/T = S,, we say that g € Ng(T') isalift of w € S,, if n(g) = w.

We see that ( % §) is alift of s € S, but (9 ) is not.
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We have the Bruhat decomposition

F, F F, F
SLy(F |_|BwB BUBsB= |9 9|uf_? "1},
0 F, F; T,

wWE Sy

B BsB
The Bruhat decomposition above and Section 1.3 tell us that # (G, B) has a basis {xp, xBsp }- For brevity,
we write I := xp and T := xpsp. We are interested in the products of these basis elements. The objective
of this section is to show that

H(G,B) = (T | T?* = (¢ — 1)T + ¢I).

To do this, we compute all possible convolution products: I x I, [ «T, T x [ and T « T'. The first three
computations are clear, since [ is the identity. The fourth computation requires more work. The basis of
H(G, B) tells us that T'x T' = ol + BT for some «, € C. Notice that

o= (al +BT)(1) = (T+T)(1), B=(al+BT)(s) = (T xT)(s).

Thus, it suffices to evaluate 7"« 7" at 1 and s. We compute

1 |BsB|
xBsB(Z)xBsB(Z XBsB(® 1= ;
] Z ° ’ ~ 1B Z ° ~ 1B 2 |B|

zeG zeG rEBsB

(TxT)(1

where the second equality comes from the observation that G = B U BsB so z € BsB if and only if
27! € BsB. Notice that B = {(§ 1) | a # 0}. Thus, we have ¢ — 1 choices for a and ¢ choices for b, so

|B| = (¢ — 1)g. To compute | BsB|, notice that
a ad—1
c#0,ad—bc=1, = ¢ c#0,.
c d

a b
BsB = SLy(F,) — B = { <c d)

Thus, we have ¢ — 1 choices for ¢ and ¢ choices for both a and d, so |[BsB| = (¢ — 1)¢*>. Then a =

|BsB|/|B| = q. Next, we compute

1 _ 1 _
(T+T)(s) = 13| > xpsp(sz)xpsp(z™") = Bl > xBsB(sz)xBsp(z™")
e r€BsB
_ |{z € BsB|sze€BsB} |{zx€BsB|zcs'BsB}| |BsBNs 'BsB|
| Bl | B | B

Notice that, for arbitrary g = (& ®/) € B, we have s7lgs = (a:bl 2) which is the general form of a

lower-triangular matrix in SLy(FF,). Thus, s !Bs =: B~, the subgroup of lower-triangular matrices in
SL2(Fg). Then s 'BsB = B™B.

We wish to characterise B~ B. Consider the product

a O c d _ [ac ad
b a ! 0 ¢ct)] \be bd+atect)”

B~ B

The entry ac is invertible and the entries bc, ad and bd + a~ ¢! are not necessarily invertible. Thus

a;é()}
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and

BsBNB™ B = { (“ Z) € SLy(F,)
C

a;éo,c;éo} - { (Z 1+bb> € SLy(F,)

Thus, we have ¢ — 1 choices for both a and ¢, and ¢ choices for b, so |[BsB N B~B| = (¢ — 1)?q. Then
8 =|BsBNB™B|/|B] =q—1.

a;«éO,c;«éO}.

We conclude that 7% = (¢ — 1)T + ¢I and we may write
H(G,B) = (T | T = (¢ — V)T + qI).
This is known as the quadratic relation. The relation lets us prove the existence of the inverse of T'. Define
the function X := ¢~ !T + (¢~ — 1)I € H(G, B). Observe that
T+« X=Tx(qg T+ (g -1 =¢'T*+ (' - 1T
=¢ ' ((q-)T+gD)+ (@' -1)T=0-¢ T +I+ (' -1)T=1.

Similarly, X « T'= I. Thus, X is the inverse of T and we may write 7! = ¢7'T + (¢7' — 1)1.

3.3. A less simple case, G = SL3(F,). Consider the symmetric group

2 _ 2 _
S1 =82 = 17
§15281 = $2518592

The elements of S3 have multiple permutation matrix representations in SL3(F,), i.e. there are multiple

Sz = {1, s1, 52, 5152, $251, 515251} = <81,82

lifts of each permutation. We fix the following representations

1 0 0 01 O -1 0 0
1=]10 1 0f,s1=|1 0 0 |,s2=|0 0 1],
0 01 0 0 —1 0 1 0
0 0 1 0O -1 0 0 0 -1
sisg=|—-1 0 0f,s2s1=10 0 —1],s182s1=|0 -1 0
0 -1 0 1 0 0 -1 0 0

Note that our choice of lifts of s; and s2 do not matter, but these choices affect the matrix representations
of 5152, s251 and s15251. As in Section 3.2, we have the Bruhat decomposition

SL3(F,) = |_| BwB = BUBs1BlU BsyB I Bs1s9B LI Bsos1B LI Bsysas1 B.
weS3
The Bruhat decomposition tells us that H (G, K') has a basis {x pwp }wes,- For brevity, we write I := xp,
T := xBs;B and S := xBs,B. We are interested in the products of these elements. The objective of this
section is to show that
T° = (¢—1)T +dl,

(G, B)= (T8
5 < §?=(q-1)S+d,

TST:STS>.

To do this, we compute the convolution products T'x T, S xS, T« S« T and S x T x S. Recall that « is
associative so the last two products are unambiguous. The basis of #(G, B) tells us that

(T *T)(z) = (cuxB + Q2XBs; B + A3XBsyB + A4XBsysaB + O5X Bsss1 B + M6 X BsysesiB)(Z),
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(S*8S)(x) = (BixB + B2XBs1B + B3XBssB + BaXBsisaB + B5XBszsi B + B6 X Bsises1B) (X)),
(T S*xT)(z) = (viXB + V2XBs1 B + V3XBsaB + V4XBs1soB + V5X Bsosi B + V6 X Bs1s2s1B)(Z),
(S*T xS)(x) = (01xB + 02XBs1 B + 03XBssB + 04X Bs152B + 05X Bsasi B + 06X Bs1s2s1B)(Z),

for some «y, 53;,7i, 6; € C. Notice that

a1 =(T*T)(1), g = (T *xT)(s1), az = (T *T)(s2),
Qg = (T*T)(Slsg), a5 = (T*T)(SQSl), Qg = (T*T)(slsgsl).
The analogous statements are true for the other convolution products and their coefficients.
We begin by showing that a; = 0 for all ¢ # 1, 2. For a3, we compute
1 z,y) € Bsi1B X Bs1B|xy=s
(Tt)le2) = |B| Z XBsB(%)XBs B(Y) = sl 1 | B o 2}|

TY=s2

To compute the numerator, notice that

FX F, F,\ (01 0\ [F; F, F, F, F, F,

0 FX F, ||t 0 o0 0 FY F,|=|F: F, F |,

0 0 IF; 0 0 -1 0 0 qu 0 0 Fx
B S1 B

which tells us that Bs; B is a subset of all matrices in SL3(FF,) with 0’s in the bottom left and bottom
middle entries. In fact, this is exactly Bs; B. To see this, we compute:

F, F, F, FX F, F,
Fg Fq Ty =q'-(¢-1)? 0 Fy T, =g (¢—1)>%
0 0 F 0 0 Fx

It is a proposition of Bump in [Bum10] that |Bs;B|/|B| = ¢, so |Bs1B| = ¢|B|. This tells us that Bs; B
consists of all matrices of the form above.

We multiply two of these matrices together to see that

]Fq ]Fq Fq ]Fq Fq ]Fq Fq ]Fq Fq

FX F, F,||Fx F, F,|=|F% F, F,

0o o F</\o o F 0 0 FX
B B Bs B

Then the product of two elements in Bs; B will always have a 0 in the bottom left entry. However, s, has
a 1 in the bottom left entry. Then |[{(z,y) € BsiB x Bs1B | zy = s2}| = 0 and a3 = 0. Similarly, notice
that s1s2, s2s1 and s1s2s1 all have non-zero entries in the bottom left or bottom middle entry. This shows
that ay = a5 = ag = 0 as well. Thus, 7% = o, I + a»T.
Similarly, we show that 8; = 0 for all ¢ # 1, 3. For /35, we compute
1 x,y) € BsoB X BsoB | xy = s1
($%8)(s2) = (g X Xpan(ohxmnly) = L EERE Tl 2 2w

TY=S81
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To compute the numerator, notice that

FX F, F,\ (-1 0 0\ (F} F, F, FX F, F,

0 FY F,llo o1flo F F|=]|0 F, F[,

o o FJ\o 10/ \0o o FI 0 FX F,
B ;; B

which tells us that Bsy B is a subset of all matrices in SL3(F,) with 0’s in the bottom left and middle left
entries. As before, BsaB consists of all matrices of the form above. We multiply two of these matrices

together to see that
FX F, F,\ (F F, F, FX F, F,
o F, F,|| 0 F, F,|=]|0 F, F,
o F F,J) \0 Ff F, 0 FX F,
Bs2B Bs2B

Then the product of two elements in Bsy B will always have a 0 in the middle left entry. However, s; has
a 1 in the middle left entry. Then |{(x,y) € BsaB x BsyB | xy = s1}| = 0 and 2 = 0. Similarly, notice
that 5159, sps1 and s1s251 all have non-zero entries in the middle left or bottom left entry. This shows that
Ba = B5 = Bs = 0 as well. Thus, S = 511 + (3S.

All that is left is to determine a1, s, 51 and (3. Notice that if x € BwB for some w € W, then z = bywbs
and 27! = by 'w™b; !t € Bw™!B. If w is a simple reflection then w™! = w. Thus z € Bs;B if and only if
' e Bs;Bfori=1,2. We Compute

_ |Bs1B]
1Bl

= (T+T)( Z XBs1B(T)XBs1 B(T Z XBs1B(®
mEG xEG

To count | Bs; B|, notice that the bottom rows and right columns of Bs; B and B are the same (highlighted
in red below):

FX F, F, F, F, F,

0 F F, FX F, F,

0 0 F; 0 0 F
E Bs1B

This tells us that, when computing |Bs; B|/|B|, the terms resulting from these columns and rows will
cancel out. Thus, we only need to consider the submatrices obtained by deleting the bottom row and

el
ORGE)

However, we have already performed this calculation in Section 3.2. We evaluated this to be ¢, so a1 = g.

right column. Explicitly, we have

Similarly, for 3;, we compute

|{x € BsyB | 27! € BsyB}|

B = (S*5)(1) = 5

B3] Z XBs2B(%)XBspB(2 ™) =

zeG
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As before, s2 is a simple reflection so 51 = |Bs2B|/|B|. To count |BssB|, again, notice that the top rows
and left columns of BsyB and B are the same (highlighted in red below):

FX F, F, FX F, F,

0 FX F, 0 F, F,

0 0 FX 0 FX F,
B Bs2B

This tells us that we only need to consider the submatrices obtained by deleting the top row and left

)
TR )

We’ve already evaluated this to be ¢, so 51 = ¢. Now we compute ay. Notice

column. Explicitly, we have

G Bs1B, 7! € BsB 'BsB Bs|B
oz2=(T*T)(sl):|{$€ |51z € BsiB, 27 € Bsy }’:erﬁ s1B |z € Bs; }|

| B | B

We want to describe sl_lle. Notice 31_1 = s1. Then
01 0 F(j F, T, 01 0 F; F, T, IF‘; F, F,
1 0 O 0 IE‘; F, 1 0 O 0 IFqX F,|=|F, F; Ty
0 0 -1 0 O IFqX 00 -1 0 O qu 0 0 IE‘;

8;1 B S1 B
We see that

IFqX F, TF, F, F, F, ]F; F, F,
s;'BsiBNBsiB=<( | F, F, Fy| oS |FX Fy Fy | p=4|Fs F, Fy
0 0 IFqX 0 0 F; 0 0 Fy

Notice that the bottom rows and right columns of sl_lB s1BN Bsi1 B and B are the same. This tells us that,
when computing |s; ! Bs; B N Bs; B|/|B|, the terms resulting from this column and row will cancel out.
Thus, we only need to consider the submatrices obtained by deleting the bottom row and right column.

FX F,
|81_1B81B NBs1B| qu F,
0 F

However, we have already performed this calculation in Section 3.3. We evaluated this to be ¢ — 1. Thus,

More specifically, we have

ap = ¢ — 1. Similarly, notice

H{z € G| sox € BsyB, 27! € BsyB}| _ {z € s;'BsyB | & € BsyB}|
| Bl | Bl '

Bs = (S 5)(s2) =
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We want to describe s, 1 Bs,. Notice Sy I — s,. Then

-1 0 0\ (FY F, F,\ (-1 0 0\ (F} F, F, FY F, F,

0 010 FX F, 0 01f[lo0 F F,|=]|0 F F,

o 10/ \0 0 FX 0 10/ \0 0 F; 0o F, F,

syt B 82 B
We see that

FX F, F, FY F, F, FY F, F,

sy 'BsoB N BsyB = 0 FX Fg|en 0 F, F,|p= 0 FX F,

0o F, F, 0 FX F, 0 FY F,

Again, notice that the top rows and left columns of s; 'BsyB N BsyB and B are the same. We only need
to consider the submatrices obtained by deleting the top row and left column. More specifically, we have

e L )]
R )

We've already evaluated this to be ¢ — 1. Thus, 83 = ¢ — 1. This lets us conclude that

T? = (q— )T +qI, S*=(q—1)S+ql.
Lastly, we wish to show that 7'ST = ST'S. To do this, we show that ; = §; for each i. Notice that

Vi = 0i = ((T'%5) * T)(w) = (S T) x 5)(w)

= g X TSt T — g 3 Stuya) T )™
z,y€G zyed

_ |Bl|2 S° TSy )T (way) — S(wya)),
r,yeG

where w € S3 is chosen appropriately. For instance, to compute v4 — 4, we choose w = s1s2.
For 71 — 61, we want to compute
1 _ _
N =8 = > TSy HIT(zy) - S(y)].
z,yeG

For the summand to be non-zero, we require that € Bs1B and y € BsyB. We look at the products zy

and yx:
F, F, F,\ (FX F, F, F, F, F,
FX F, F,| [0 F, F|=|F F, F,|¢BsiB,
0 0 Fy 0 Fy F, 0 F; F,
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FX F, F,\ (F, F, F, F, F, F,
0 F, F||F F, F,|=|F, F, F,| ¢ Bs:B.
0 Ff F,J) \0 0 Ff FX F, F,

y >

We see that T'(zy) — S (yx) is always zero whenever T'(z~1) and S(y~!) are non-zero, so this sum is always
0. Thus, Y1 = 51.
For 72 — 62, we want to compute
1 ~1 ~1
Yo — 09 = BE mge:G Tz )S(y )T (s12y) — S(s1yx)].

For the summand to be non-zero, we require that € Bs; B and y € BsyB. We look at the products s1zy

and syyx:
01 O F, F, F, IE‘qX F, F, IF; F, T,
1 0 0 IE‘; F, Ty 0 F, F,|=|F, F, F,| ¢ Bs1B,
00 -1 0 o0 IF‘; 0 qu F, 0 IE‘qX Fqy
S1 T I
1 0 IE‘; F, T, F, F, F, F, F, F,
1 0 O 0 F, Ty IE‘qX F, F,|=1|F, F, F,| ¢ Bs2B.
0 -1 0 qu Fy, 0 O IE‘qX IB‘; F, Fq
S1 ‘yr x

We see that T'(s1ry) — S(s1yx) is always zero whenever T'(z~!) and S(y~!) are non-zero, so this sum is

always 0. Thus, y2 = da.

For ~3 — 43, we want to compute

=8 =g 3 Tl ST (sary) - S(say)]
z,yeG

For the summand to be non-zero, we require that z € BsiB and y € BsyB. We look at the products sazy

and soyx:

=

Fq Fq Fq F; q ]Fq Fq ]Fq Fq

0 F, F,|=|0 F} F,|¢BsB,

o |
—
o O
_ O
=
X
=
=}
=
£)

o 10/\o o F)\o FrF, FX F, F,
52 z y

-1 0 0\ (F* F, F,\ (F, F, F, F, F, F,

0o 0o1||lo F F||F F, F,|=|F F, F,|¢BsB.

0o 10/ \o F FJ\o F F, F, F,

0
e

$2 y
We see that T'(soxy) — S(s2yx) is always zero whenever T'(z~!) and S(y~1) are non-zero, so this sum is

always 0. Thus, y3 = d3.
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For ~4 — §4, we want to compute

> TSy T (s1say) — S(s182y7)].

1
Y- b= =
|13‘ z,yeG

For the summand to be non-zero, we require that + € Bs;B and y € BsaB. We look at the products

s182xy and s1Soya:

0 0 1 F, F, Ty Fy F, T, 0 Fy F,
-1 0 0 Fy Fy, Fy 0 F, Fg|=1|F, F, F,| & Bsi1B.
0 -1 0 0 0 Fy 0 F; F, Fy F, Fy
S182 x )
0 0 1 a b h i j Ik fl fm+gn
-1 0 O 0 d kI m —ah —bk —ai—0bl —aj —bm —cn
0 -1 0 0 f 0 0 n —dk —dl —dm — en

S189

)

For z to lie in Bs1B and y € BsyB, we must have afkn # 0. For the product s;seyz to lie in BsaB,
we require —dk = 0. Since k # 0, we must have d = 0. However, this means —dl = 0, but we also
require —dl # 0 for this product to lie in BsyB. Then this product can never lie in BsyB. We see that
T(soxy) — S(seyz) is always zero whenever T'(z~!) and S(y~!) are non-zero, so this sum is always 0.
Thus, Y4 = (54.

For 5 — 65, we want to compute
1
Y5 — 05 = BE mge:G T(z~")S(y [T (s2s12y) — S(s2519)].

For the summand to be non-zero, we require that x € Bs;B and y € BsyB. We look at the products

s9s1xy and sos1yx:

0 -1 0\ (F, F, F,\ (F} F, F, FX F, F,
0 0 -1||F F, F,||0 F, F, 0 FX F,|¢BsiB,
1 0 0 o o F)\o Ff F, F, F, F,

5281 e Y
0 -1 0\ (F F, F\ (F, F, F, F, F, F,

o -1||o F, F|[F: F, F, FX F, F,| ¢ Bs:B.
1 0 0 0o F F,J \0 0 F; F, F, F,

S981

Y

8

We see that T'(s2s17y) — S(s2s1y7) is always zero whenever T'(z~!) and S(y 1) are non-zero, so this sum

is always 0. Thus, v5 = 6.

For 6 — d¢, we will compute ¢ and g seperately and show that they are equal. We want to compute

T(x_l)S(y_l)T(slsgslxy).
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We look at the product s1s2512y:

0 0 -1\ [h i T b oc 0 L =

0 -1 0|k 1 m 0 d e|=|gg —bk—di—fm —ck—el-

-1 0 0 0 0 75 0 f g ﬁ —bh—di— fj —ch—ei—gj
S18281 ‘xr Y

For z to lie in Bs1 B, we require that k # 0 and hl — ik # 0 which can be restated at 7 # % Similarly, for
y to lie in Bsy B, we require that f # 0 and e # dTg

We now investigate when the product s1s2s12y lies in Bs; B which will lead to an easy evaluation of .

=0
dg ef
which tells us that h = O Next, we require that —bh — di — fj = —di — fj = 0. We arrange to rewrite this

condition as j = —sz‘_ Lastly, we require that —ch — ei — gj = —ei — gj # 0. In other words, we require

that —ei — g(‘Tdi) =i(—e+ %) # 0. This tell us thati # 0 and —e + dTQ # 0, which is already true since
y € BsyB.

First, we require that f # 0 which is already true since k£ # 0. Secondly, we require that

We see that s1s9s12y lies in Bsy B when f,i,k #£20,h =0, j = —sz‘ and b,c,d, e, g,l,m € F, are arbitrary.
Thus,

|Blve q (q—1)"- 1

7 3
=q'(¢g—1).
bede,gl,meF, fikz0 h=0 j==di

Now we want to compute

d¢ = BE Z S(y DT (xS (s1598192).
z,yeq
We look at the product s1s251y:
0 0 =1\ (gt b ¢\ [h i —fk —fl —fm— i
0 -1 0 0 d e El m |= —dk —dl —dm — 75+
-1 0 0 0 f g/ \0 0 2 G — bk e b s —bm—
515251 y z

Now we investigate when the product s;s2s1yz lies in Bso B which will lead to an easy evaluation of ds.
First, we require that — fk # 0 which is already true since f, k # 0. Secondly, we require that —dk = 0
Tgc f bk: = f = 0 which tells us that e # 0 and we can
rearrange to see that b = fk Lastly, we require that ==+ — bl # 0 which we can rearrange to see that

i # befl = ( fk)efl bl which is already true since z 6 Bs1B.

which tells us that d = 0. Next we require that

We see that s1s281yx lies in Bso B whene, f,k #0,d =0,b = eTk and c, g, h,1, j,l,m € [F, are arbitrary.
Thus,
_ 7 (103, ) _ T 1)3
|Blde = q (¢—1)°- 1 - 1 =4q'(¢—1)"
cghijlmeFy e fkz0  A=0 b=chp

Then |B|(v6¢ — d¢) = 0 and 6 = d¢. Thus, T'ST = ST'S. This completes our example of G = SL3(FF,;) and
we conclude that
T? = (¢ - 1T +4l,

H(G,B)=(T,S
5 < §?=(q—1)S+dl,

TST:STS>.
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As in Section 3.2, we can write down the inverses of 7' and S:

T l'=¢ T4+ (=11, S'=¢'8+ (-1

3.4. An even less simple case, G = SL4(F,;). Consider the symmetric group

512 =1,
S$iSi+15; = Si+15iSi+1, > .
5183 = S351

Sy = <$1,52,83

We fix a choice of permutation matrices in SL4(FF,) that generate Sy:

01 0 O -1 0 0 O 1 0 00

1 0 0 O 0 0 10 0 -1 0 0
S1 = , 82 = , 83 =

0 0 —1 0 0O 1 0 0 0 0 0 1

00 0 1 0 0 0 1 0 0 1 0

Asbefore, 1 (G, K) has abasis { X B }wes,. For brevity, we write I := xp and T} := x s, 3. The objective
of this section is to show that

LT T =T T4,

T? = (¢ —1)Ti +ql, >
T3 =T15T

H(G,B) = <T1,T2,T3

We begin by investigating the structure of the double cosets Bs; B, BsoB and Bs3B. Observe that

FY F, F, Fg\ (0 1 0 0\ (F F, F, F, F, F, F, TF,
0 Ff F, Fg||1 0 0 o0 FY Fy Fo| [|Fy F, F, F,
0 0 FY Fg||l00 -10f[[0 0o F F| [0 0 Ff F,|’
o 0o o FJ\oo0 0o 1/\0o 0 0 F; 0 0 0 F¥
B S1 B
FY F, F, F,\ (-1 0 0 0\ (FY F, F, F, FY F, F, F,
0 Ff F, F, 0O 010||0 FfF, F,| |0 F, F, F,
0 0 FX F, 0 00f[o o FX F| |0 Ff F, F|’
0 0 0 Ff 0 001/ \0 0 0 F; 0 0 0 F
B 82 B
FY F, F, F,\ (1 0 o0 0\ (FY F, F, F, Ff F, F, F,
o Ff F, Fg||0 -1 00||0 Ff F, Fo| |0 F F, F,
0 0 FY Fg||0 0 0 1]|0 0 Ff F| |0 0 F, F,
0 0 o Fs/\0o o 10/ \0 0 0 F; 0 0 FX F,
B 53 E

Notice that copies of Bs; B C SL3(F,) and BsaB C SL3(F,) from the previous example (highlighted
in blue and red with their common entries in purple) lie in these three double cosets in SL4(F,). We
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multiply two matrices belonging to Bs; B together to see that

Fq Fq Fq ]Fq IE‘q ]Fq IE‘q IFq ]Fq IFq ]Fq Fq

F; ]Fq Fq Fq IF; Fq Fq IFq _ F; IFq Fq ]Fq

0 0 F F,||0 0 FXF, 0 0 F F,

0o 0o o F/\o 0o 0 FX 0 0 0 F
B B Bs1 B

Then the product of two elements in Bs; B lies in BsB. The same is true for BsyB and Bs3B.

After making these observations, it is clear that the SL4(F,) case will reduce to the SL3(F,) case when
verifying the relations Tf = (¢ — 1)T; + ¢l and T;T;11T; = Ti1TiTi+1, just as verifying these conditions
reduced to the SLy(F,) case. However, we must still manually verify the relation 7773 = T57}. First, we
write
TiTs = Y owXsws, T5T0 = Y BuXBub.
weSy weSy

Then we may write

o — o = ,; S Tya YT (wa) — i (2w)),
zeG

For the summand to be non-zero, we require that € Bs3B. Fix © € Bs3B, so it has the form

1
mbcd
. 06f97
0 0 h 1
0 0 j k

with ej # 0 and i # % Notice that if wx ¢ Bs; B and zw ¢ Bs; B then T} (wzx) — T1(zw) = 0. We show
that if w # s1s3 then wx ¢ BsiB and xw ¢ Bs1B (hence, a, — 5, = 0 for all w € Sy — {s1s3}). The
contrapositive of this statement is that if wx € BsiB or xw € Bs; B then w = 5153, which we now prove.

Suppose that wx € Bs;B. Note that left-multiplication by w permutes the rows of = according to w.
Recall that elements of Bs; B have the form

F, Fy Ty Ty

FX F, F, F,
0 0 FY F,
0 0 0 FX

We see that, for wz to lie in Bs B, w must perform the row operation R; — R>. We also see that w must
not perform the row operations Ry — R3 or Ry — Ry since e # 0. This means w must perform the row
operation Ry — R;. Lastly, w cannot perform the row operation R4 — R4 since j # 0. This means w
must be the permutation matrix s1s3 = (1 2)(34) € Sa.

Similarly, suppose that zw € Bs;B. Note that right-multiplication by w permutes the columns of x
according to w. We see that w cannot perform the column operation C; — Cy, Cy — Cs or C; — C4 since
the bottom three entries of C; are 0. Then w must perform the column operation C; +— C3. We also see
that w cannot perform the column operation Cy — C'3 or Cy — C}4 since the bottom two entries of C5 are
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0. Then w must perform the column operation Cy — C;. Lastly, w cannot perform the column operation
C3 — Cjy since j # 0. This means w must be the permutation matrix sys3 = (1 2)(3 4) € Sy.

We have shown that o, = 3, for all w € Sy — {s1s3}. Now we show that oy, s, = 5,5, by manually
computing both coefficients. Observe that

Qg5 = (T1 x T5)(s183) = ]B| > Ti(sissz)Ta(ah),
xeG

Bsiss = (I3 % T1)(s153) ]B| Z T3(z~ )T (zs1583).
zelG

To count ay, 5,, we count how many ways sqs3x can lie in Bs; B. We compute

001 0 0\ /1 0 00\ [z b ¢ d 0 —e —f —g

10 0 0[]0 =100 0 e [ g o boe d

00 —-10]f0 0 01 0 0 h i 0 0 —j —k

00 0 1/\0o 0 10 0 0 j k 0 0 h i
M M M

For syssx to lie in Bs; B, we require that h = 0. We also require that 7 # 0 but this is already true since
we require that ¢ # hk = 0. We also require that j # 0 and TR o 5 7 0 but these are already true since
x € BssB. Overall, we require thate,i,j # 0, h =0and b, ¢, d, f,g, k € Fy. Thus,

|Blas,s, = ¢®  (g—1)*- 1 =q¢%qg—1)>
bed,f,9,k€Fy  eij£0 h=0

To count fs, s, we count how many ways zs;s3 can lie in Bs; B. We compute

Wl_mbcd 01 0 0\ /1 0 00 bmd—c
0 e fgllt 0 0o ol]lo -1 00| Je 0 g —f
0 Roilloo =1 0]lo o o 1| |o 0 i —h
0 0 j k/\oo0o 0o 1/\0 0 10 0 0 kE —j
M M M

For xs;s3 to lie in Bs; B, we require that £ = 0. We also require that ¢ # 0 but this is already true since
we require that ¢ # hk = 0. We also require that j # 0 and (hk 7é 0 but these are already true since
x € Bs3zB. Overall, we require thate,i,j # 0,k = 0and b, ¢, d, f,g, h € F,. Thus,

|BlBsss = &° (g-1)°- 1 =d"(¢-1)"
b,C,d,f,g,he]Fq e,i,j;ﬁO k=0
Then |B|(cs,s5 — Bsis3) = 0 and ag,55 = Bs,s5- Thus 1173 = T37;. This completes our example of
G = SL4(F,) and we conclude that

T T =T 1T,

T? = (¢ — DT} +ql, >
T =TTy

/H(G7 B) = <T1)T27T3

As in the previous cases, we can write down the inverse of 7;:

T =q '+ (¢ - 1)L
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3.5. Coxeter groups. The previous sections illustrate a relationship between the Weyl group W = S,
and the relations generating 7 (G, B). In particular, generators of .S, are subject to the braid relation
8iSi+1Si = Si+18iSi+1, Whereas generators of (G, B) are subject to the relation T;7;17; = Ti411;Ti41.
Similarly, generators of \S,, are subject to the commuting relation s;s; = s;s; for [i — j| > 1, whereas the
generators of (G, B) are subject to a similiar relation 7;7; = T;T; for |t — j| > 1.

We make some observations about S,,. Firstly, note that .S,, may be generated by a finite set of elements
{s1, 82, ...,5n—1}, where each element is the simple transposition s; = (i ¢ + 1). Next, notice that each
generating element satisfies s> = 1, so they are involutions. The braid relation may be rewritten as
(sisi+1)> = 1 since s; and s;41 are involutions. Similarly, the commuting relation may be rewritten as
(sis;)*> = 1. Notice that each of these three properties may be expressed as (s;s;)™7 = 1 for some
sequence (Mm;j)i j=1,.. n—1. Here m;; =1, m; ;41 = 3 and m;; = 2 for |i — j| > 1. This information can be
encoded in the matrix

1 3 2 ... 2
3 1 3
M=12 3 1 2
2 ... 2 3 1
Generally we say that IV is a Coxeter group, and (W, S) is a Coxeter system with Coxeter matrix M = (m;;)
if W is generated by the finite set S = {s1,..., s, } subject to the relations (s;s;)™¥ = 1, where m;; = 1
and m;; € {2,3,4, ..., 00} with the convention that m;; = co means no relation is imposed [Hum90].

A few important consequences are immediate from this definition. Itis easy to see that s; and s; commute
if and only if m;; = 2. Furthermore, M must always be a symmetric matrix. To see this, notice (s;s;)" =
(Sjsi)miijSj = Sj(SiSj)mij S; = 8§85 = 1. Thus, M = Myj.

We will restrict our attention to finite Coxeter groups. Note that all finite Weyl groups are examples of
finite Coxeter groups.

3.6. The Hecke algebra #,(W, S). Fix the field F,. The Hecke algebra generated by the finite Coxeter
group (W, S) over F, is denoted H,(WV,.S), and is the algebra generated by an identity I and {Ts}scs
subject to the quadratic relation T2 = (q — 1)T + ¢I and the braid relations

I TiTs- =TT Ty---.

TV
mst terms ms¢ terms

Let G = SL,(F,;) and B = B(F,). Sections 3.2, 3.3 and 3.4 illustrate that (G, B) is actually a Hecke
algebra generated by the Coxeter group S,,. Then we may write

T¢ = (a— 1T+,

H(G, B) = <T1,T2,...,T3 T,TiT;... = TyTiT; ... >
—— N———
m;; terms m;; terms

More generally, if G is a group of Lie type over a finite field, B is its Borel subgroup, and (W, S) is the
Coxeter system of its Weyl group, then H(G, B) = H,(W, 5).
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In [Cox35], Coxeter presented a classification of the finite Coxeter groups. This contains four infinite
families of groups, and eight other groups. One of these infinite families are the dihedral groups, Da,,.
Recall that the dihedral group has the familiar presentation (r, f | ™ = f2 = (rf)? = 1), where r
represents a rotation of the n-gon by 2* radians and f represents a flip of the n-gon. Notice that there is
another presentation (s, t | s> = t? = (st)® = 1). Then Ds, has the Coxeter matrix (} 7). We conclude
that the Hecke algebra generated by Dy, over I, is given by

T2:(q_1)Ts+qla

S

Hq(Daon,{s,t}) = ( Ts,T;
(P ) < 1= - nna

TSETS...:TtTSTt...>.

n terms n terms
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4. Hecke ALGeBRAS OF LocaLLy Compract GrROUPS

This chapter is devoted to generalising the notion of the Hecke algebra of a finite group. In particular,
we weaken the condition that G and K must be finite to the condition that G must be a locally compact
topological group and K must be a compact subgroup. We add the additional assumption that the
functions in the Hecke algebra must have compact support. This is done for technical purposes, namely
so that the functions of the Hecke algebra may be expressed as finite sums of basis elements. Since our
groups are not longer finite, the convolution product on Fun(G) defined in Section 1.1 no longer results
in a finite sum of C-valued functions, so it cannot be used. To deal with this, we must introduce the
notion of the Haar measure. This allows us to define the convolution product in terms of an integral
with respect to the Haar measure. We see that this new Hecke algebra reduces to the Hecke algebra of
Chapter 1 when G is finite.

4.1. Locally compact groups and Haar measures. We say that a group G is a topological group if it is
equipped with a topology such that the group multiplication map p: GxG — G and the group inversion
map ¢: G — G are continuous. Here the product space G' x G is equipped with the product topology.

We can equip any group with the discrete topology (i.e. the topology where all sets are open) to form a
topological group. Some more interesting examples to keep in mind are:

(i) (R™,+) equipped with the Euclidean topology.
(ii) (Q,+) equipped with the subspace topology from R".
(iii) GLy,(R). This may be viewed as a subspace of R" via an ‘obvious’ injection (see below).
(iv) On(R). This is a subgroup of GL,,(R) and is equipped with the subspace topology.
(v) GL,(F,[t]) and GL,(F4((t))). Here F,[t] is the field of formal power series over F, in the variable
t and F,((¢)) is the field of formal Laurent series over I, in variable t. More generally, we may take
GL,, over any non-archimedian local field & or its ring of integers O (see Chapter 5).

Recall that a topological space is compact if every open cover contains a finite subcover. Furthermore, a
topological space is locally compact if every point has a compact neighbourhood. We say that a topological
group G is (locally) compact if its associated topological space is (locally) compact. Some examples are
On(R) (compact), GL,, (F,[t]) (compact) and GL,,(F,((t))) (locally compact).

In order to define the Hecke algebra of a locally compact group, we want to define a notion of integration
over topological groups. Those familiar with measure theory should already know that this requires the
notion of measurable sets, measurable functions and measures. To this end, we present some concepts
from measure theory. See [Fol84] for details.

The topology of G can be used to generate a o-algebra on G. Here a o-algebra on GG means a collection of
subsets of G that includes G, is closed under set-complements in GG, and is closed under countable unions.
De Morgan’s laws tell us that this implies closure under countable intersections as well. The o-algebra
induced by the topology of G is called the Borel o-algebra is the o-algebra generated by the open sets of
G. That is, every open set is contained in the Borel o-algebra, along with every complement, countable
union and countable intersection as well.
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We call the elements of a o-algebra measurable sets. Given a o-algebra, we can define a notion of length on
the measurable sets. Suppose that ¥ is a o-algebra. The function p: ¥ — [0, oo] is a measure if (&) = 0,
and whenever the sets Eq, E», ... € ¥ are disjoint, there holds the countable additivity property

H( U Ez) = ZN(Ei)‘

i=1
A consequence of the above property is the countable sub-additivity property: if Ey, Fs,... € ¥ is any
sequence (not necessarily disjoint), then there holds

M( U E@) < ZM(Ei)-
i=1 =1

Now fix a locally compact topological group G and fix X to be the Borel o-algebra of G. A left Haar measure
on G is a non-zero measure j;: X — [0, 00] such that, forall g € Gand S € %, there holds 14;(9S) = 1 (5),
i (K) < oo for all compact K C G, and

wi(S) = inf{u(U) | open U O S} = sup{u(K) | compact K C S}.

This last condition is called reqularity of ;. Here the set ¢S is the left-translation of S by g. A right Haar mea-
sure i, is defined similarly, instead with the right-translation invariance property that ., (Sg) = p,(S).

In [Fol84], it is shown that all locally compact topological groups possess a left/right Haar measure.
Furthermore, this Haar measure is unique up to a positive scalar multiple. Then we do not need to
concern ourselves with the question of existence and uniqueness of Haar measures.

A familiar example of a left Haar measure is the Lebesgue measure on R™. This is an abelian group, so
the left Haar measure is also clearly a right Haar measure. We investigate the relationship between left
and right Haar measures now.

Let 12 be a left Haar measure on G. Take z € GG and some measurable subset £ C G. Then the measure i,
defined by p,(E) := pu(Ex) is also a left Haar measure by the associativity of G. Then, since all left Haar
measures are a scalar multiple of each other, there exists a scalar A(z) such that y1,, = A(z)p. This defined
a function A: G — (0, 00) called the modular function of G. This is a continuous group homomorphism
from G to (0, o0).

The modular function describes the relationship between left and right Haar measures. Specifically, left
and right Haar measures coincide when A = 1. A locally compact group for which every left Haar
measure is also a right Haar measure is called unimodular.

We present some propositions in [Fol84].

Proposition 21. If G/[G, G| is finite the G is unimodular.

Proof. The modular function is a continuous group homomorphism from G to (0, c0), the latter of which
is abelian. Then this map A must annihilate the commutators [z, y| for all z and y, so it must factor
through G/[G, G]. Since G/|G, G] is finite, we know A(G) is a finite subgroup of (0, c0). However, the
only finite subgroup of (0, o) is the trivial subgroup. O

Proposition 22. If G is compact then G is unimodular.
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Proof. 1t’s clear that G = Gz, for any x € G. Now let p be a left Haar measure and notice

w(G) = p(Gr) = Az)u(G).

Since G is compact, we have 0 < ;1(G) < oco. Then we must have A(x) = 1 for any choice of x. O

We sketch an example of a Haar measure for the case G = GLy(R)*, the subgroup of GLy(R) of matrices
with positive determinants. We may identify GL(R)" with an open subset of R*. Specifically, we make

Tr1 T2
( > < ($1,$2,IE3,IE4).

the identification

r3 4

Now take a measurable set E C GL2(R) ™. To define the measure of E, we employ the Lebesgue measure
on R*. Specifically, define the measure of E by

1 1
E)=| ————— = dridredrsdry = | — d
#LE) /E (x1224 — 2223)? Prirattst /E (det )2 ©

where the left integral is easily understood as the Lebesgue integral of a real-valued function on R*.
To show that p is a Haar measure, we note that the Lebesgue integral endows ;. with many properties.
It is clear that p will be non-negative, positive definite, countably additive, finite on compact sets and
regular. The only property left to check is left-translation invariance. To check this, fix g € GL2(R)" and
we consider the translation map 7,: R* — R* given by T, () := gz. Then we have

1
F)= —— dzidradrsdry.
n(gE) /T(E) (det )2 T10X20T30T 4

We make the change of variables x = T, (y) = gy which yields

1
u(gkE) = /E W Jac Ty dyidyadysdya,

where Jac Ty, is the Jacobian of the transformation 7,. One can compute Jac T, = (det g)? which allows
us to compute

1 1
E) = ——— JacT, dyi1dy>dysdys = ——— dy1dyadysdyy = p(E).
1(gE) /E(detgy)2 ac Ty dyidyadysdy, /E(dety)2 y1dyadysdys = p(E)

We see that p is left-translation invariant and p is indeed a left Haar measure.

4.2. The Hecke algebra of a locally compact group C.(K\G/K). Consider a unimodular locally com-
pact topological group G and some open and compact subgroup K. Note that a non-trivial K might not
exist for some choices of GG. However, we will see in Chapter 5 that non-trivial choices for K exist when
G is a matrix group over a non-archimedian local field.

Then the Hecke algebra C.(K'\G/K) is defined as
C.(K\G/K) :={f: G— C| supp f is compact, and f(k1gk2) = f(g9), Vg € G, Vki, ks € K}.

Notice that, since K is open and compact, the topological space K\G/K is discrete. This means that a
function on K'\G/K having compact support is equivalent to it having finite support.
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Clearly C.(K\G/K) has the structure of a complex vector space. We wish to endow it with the structure
of an algebra. To this end, we equip the space with the convolution product defined by

(F % ) /f:cg 1) dug),

where dyi(g) denotes integration with respect to the Haar measure p in the variable g. Recall that p is
unique up to a scalar multiple. It is common to choose this scalar so that ;.(/) = 1, which uniquely fixes
. As in Chapter 1, the Hecke algebra here is an associative algebra.

It is natural to ask whether or not this construction of the Hecke algebra is a true generalisation of the
Hecke algebra throughout Chapter 1. In other words, we want to recover the usual definitions of x and
H is the case that G is a finite group.

To this end, let G be finite and equipped with the discrete topology (i.e. every subset is open). In this
topology, every subset is compact. Then it is easy to see that GG is locally compact. Furthermore, the Borel
o-algebra will contain every subset of G.

Define the function p: ¥ — [0, 00] by u(A) := |A], the cardinality of A. It is easy to verify that this is a
measure and it is known as the counting measure. To see that it is a Haar measure, we can see that p is
left-invariant since |S| = |¢gS| for any g € G and S C G. Secondly, notice that ;(K) < oo for all compact
K since every subset of G is finite. Lastly, since every subset of G is open and compact, sub-additivity of
measures tells us that the condition p(S) = inf{u(U) | open U D S} = sup{u(K) | compact K C S}is
satisfied by picking U = K = S.

Next, notice that in this setting, all functions G — C have compact support. Then pick two functions
f,f': G — Cand any x € G. Observe that

(f ) / Fa) g™ dulg) = S @) fa™) = 3 Fw) ()
zeG Yz=x

since y is the counting measure. We see that we truly recover the previous results of Chapter 1 when we
choose G to be a finite group.
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5. SpHERICAL HECKE ALGEBRAS AND IWAHORI-HECKE ALGEBRAS

In this chapter, we investigate two Hecke algebras: the spherical Hecke algebra and the Iwahori-Hecke
algebra. In order to define these algebras, we require an understanding of local fields and their structure.
In Section 5.1, we present the notions of a field extension, finite extension, absolute values and the p-adic
numbers. This allows us to succinctly classify all local fields. Next, we describe the structure of local
fields in Section 5.2 and explicitly compute some of these objects to aid in our understanding of these
fields. We define the spherical Hecke algebra and give a proof that it is commutative. We conclude with
the definition of the Iwahori subgroup and an investigation of the Iwahori-Hecke algebra.

5.1. Localfields. Fixafield F. Wecall K C F asubfield of F'if K is a field with respect to the addition and
multiplication operations equipped to F. There are many immediate examples. For instance, Q C Q(v/2),
QcR,RcC,andsoon.

If K C F is a subfield then we call F a field extension of K and denote this extension by F'/ K. The degree
of the extension F/ K is the dimension of /' when considered as a K -vector space. The degree of F'/K is
written [F' : K] and we say F'/ K is a finite extension when [F' : K] < oo.

For instance, there holds [C : R] = 2. To see this, we consider C as a real vector space. We convince
ourselves that {1, 4} is an appropriate basis that demonstrates C/R is a field extension of degree 2.

As another example, consider [R : Q]. We can think of infinitely many irrational numbers that are not
rational scalar multiples of each other. For example, v'2,1og 3, 7, and so on. This tells us that we can’t find
a finite basis for R as a Q-vector space. Then [R : Q] is not finite and R/Q is not a finite field extension.

Our fields of interest are Q,, the p-adic numbers, and F((t)), the formal Laurent series. We remind the reader
that the latter field is given by

Fy((1) = { S ait
i=N

To describe Q,, we require a definition that equips fields with a notion of norm.

aZ'GIFq,NGZ, aN;EO}.

A norm or an absolute value on a ring R is a function | - |: R — [0, 00) such that, for all 7, s € R, there holds
|r-s| =|r|-|s|, |[r+s| < |r|+|s|, and |r| = 0if and only if r = 0. If the second condition is replaced with
the strong triangle inequality |r + s| < max{|z|, |y|} then we say that | - | is non-archimedian. Otherwise, we
say that | - | is archimedian.

All fields have a trivial absolute value, given by |r|wiv = 1 for  # 0 and |0ty = 0. An example of a
non-trivial absolute value is the one defined on F,((¢)). Consider an arbitrary element >"2° \ a;t* in F((2))
written so that ay # 0 if the chosen element of F,((¢)) is non-zero. Then

o0
>
i=N

Another example of an absolute value is found in the construction of Q.

)0, if a; = 0 for all ¢,

gV, else.

Fix a prime p > 2. Given any § € Q*, we can uniquely write § = p" - & where ged(z, y) = 1 and p does
not divide x any further. This is a simple consequence of the fundamental theorem of arithmetic. Then
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the p-adic absolute value | - |,,: Q — [0, 00) is defined by

_Jo fb:
p. p " iff = fas above.

The p-adic numbers, denoted Q,, is the completion of Q with respect to the p-adic absolute value. This is

analogous to the usual completion of a normed vector space. More precisely, we can explicitly write out
the elements of Q, as

Qp = { Z aipi

=N

a;=0,1,2,...,p—1, N € Z, aN#O}.

Then the absolute value defined on Q, is given by

o
i
g a;p
i=N

We are almost ready to define local fields. We say that a ring R is a topological ring if it is equipped with

N

a topology such that the addition and multiplication maps +,-: R x R — R are continuous. Here the
product space R x R is equipped with the product topology. We say that a topological ring is (locally)
compact if its associated topological space is (locally) compact. A locally compact topological field is
a field equipped with a topological space whose underlying ring is a locally compact topological ring.
Now we are ready to define local fields.

A local field is a locally compact topological field k£ with respect to a non-trivial absolute value. In fact, as
remarked in [Mil20], all fields satisfying such a property are isomorphic to a small family of fields. We
summarise the possibilities for k:

(i) If | - | is archimedian, then k is R or C.
(if) If | - | is non-archimedian and char k = 0, then k is a finite extension of QQ,, where p is prime.
(iii) If | - | is non-archimedian and char k = p, then k is F,((¢)), where ¢ = p" and m > 1.

We present an example of a finite extension of Q,. Take Q,((t'/™)) for some prime p > 2 and m € Z with
p 1 m. This field has the elements

tl/m —{Zaz

Inside Q,((t'/™)) lies a subfield of constant functions, K. That is,

aiE@p,NEZ, CLN#O}.

K ={f € Qy(t"™) | f(t) = ¢, for some ¢ € Q,}.

Then K is isomorphic to Q, and we can think of @, as a subfield of Q,((t'/™)) via this subfield K. We
see that B = {t!/™ ¢?/™ ... t} is a basis demonstrating Q,((t'/™)) is a Q,-vector space of dimension m.
Thus, Q,((t'/™)) is a finite extension of Q, with degree m.
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5.2. The structure of non-archimedian local fields. Let k be a non-archimedian local field. We require
some understanding of the structure of these fields. To this end, we define the following important
objects:

(i) O:={z € k:|z| <1}, the ring of integers of k.
(i) O* :={z € k : |z| = 1}, the group of units in the ring of integers.
(iii) P:= 0O — O* ={z € k: |z| < 1}, the unique maximal ideal of O.
(iv) K := O/P, the residue field of k.
(v) w :=a generator of P called a uniformiser of k. Then we may write K = O/wO.

We compute some of these objects in some cases.

Suppose that k = Fy((t)). Then O = {>"° a;t’ € k| ¢V < 1}. Note that ¢~V < 1 if and only if N > 0.
Then O = F,[¢], the ring of formal power series over F,. Furthermore, O* = {3 v a;t' € k| ¢~ = 1}.
Note that ¢~V = 1 if and only if N = 0. Then O* = {f € k| f(0) # 0}. Next, P = {z € k| || < 1}.
Note that ¢~V < 1if and only if N > 1. Then P = tF[t]. Lastly, K = F,[t]/tF,[t] = F,. This can be seen
by the surjective ring homomorphism F[t] — F, given by f +— f(0). It is easily seen that this map has
kernel tF,[t], so the first isomorphism theorem for rings yields the result.

Suppose that k = Q,. Then O = {>.° v a;p’ € k| p~ < 1}. Note that p~" < 1if and only if N > 0.
Then O = Z,, the ring of p-adic integers. Furthermore, 0% = {>"° v a;p’ € k| p~» = 1}. Note that
p~N =lifand onlyif N = 0. Then O* = {>_° \ a;p’ € k| ag # 0}. Next, P = {z € k| |z| < 1}. Note that
p N <lifandonlyif N > 1. ThenP = {3 L yaip' € k| N >1} = {p>Zyaip’ € k| N >0} = pZ,.
Lastly, K = Z,/pZ, = F,. This can be seen by the surjective ring homomorphism Z, — [F, given by
S v aip’ > ag. Itis easily seen that this map has kernel pZ,, so the first isomorphism theorem for rings
yields the result.

We make the observation that K = F, for all non-archmedian local fields. We have not yet shown this for
the case when £ is a finite extension of Q,,. In this case, O will be a finite extension of Z, and the above
procedure can be followed to see that K is a finite extension of g, = F,, so K is also a finite field.

5.3. The spherical Hecke algebra C.(K°\G/K°). Choose a non-archimedian local field k. Then con-
sider G := GL, (k) and K° := GL,(0O). To see that G is locally compact, we recall that it is a subspace of
k", and every open subset of k" s locally compact in the subspace topology. The ring of integers O is
open and compact in k, so K° is open and compact in G. The spherical Hecke algebra is the Hecke algebra
C.(K°\G/K°), following the notation of Section 4.2.

We conclude this section with the result that the spherical Hecke algebra is commutative. To this end,
we present a preparatory lemma of Bump which is stated and proved in [Bum10].

Lemma 23 (The p-adic Cartan Decomposition). Every double coset in K°\G/K° has a unique representative
of the form
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where w is the uniformiser of P and \y > Ay > --- > A, are integers.

Theorem 24. The spherical Hecke algebra C.(K°\G/K°®) is commutative.

The following proof follows the idea of Gelfand’s Trick from Section 1.7. One can follow the proof of
Gelfand’s Trick in the finite case in order to produce a proof of the Trick in the locally compact case. This
is because the requirement that functions are compactly supported reduces the convolution product of
the Hecke algebra to a finite sum when performing the proof. Then the proof in the locally compact case
will reduce to the computation we have already performed in the finite case.

Proof of Theorem 24. The anti-automorphism ¢: G — G given by ¢(g) := ¢' is an involution. It can be
pulled back to the map ¢*: Fun(G) — Fun(G) given by (¢*f)(g9) = f(¢(9)) = f(¢'). This map ¢
preserves K ° (i.e. the image of K° lies in K°). The previous lemma tells us that each double coset contains
a diagonal representative, on which ¢ is clearly the identity. Then ¢* is an involutive anti-automorphism
acting as the identity on a basis of the Hecke algebra, so it is commutative. O

We generalise the notion of a Geland pairs from Chapter 1. See [Bum10] and [AGS08]. A complex
representation G — GL(V') is said to be smooth if the stabiliser {k € G | k- v = v} is open for every
non-zero v € V. Furthermore, a smooth representation is admissible if, given any open subgroup K, the
vector subspace of K-fixed vectors V¥ is finite-dimensional.

Then the pair (G, K) is said to be a Gelfand pair if, for every admissible irreducible representation V'
of G, the subspace of K-fixed vectors VX is at most one-dimensional. This is equivalent to saying that
C.(K\G/K) is commutative. In the case that G is a finite group, this is equivalent to saying that Ind% 1
is multiplicity-free (c.f. Section 1.8). Theorem 24 tells us that (G, K°) is a Gelfand pair.

5.4. The Iwahori subgroup I. Fix a non-archimedian local field k. Recall its ring of integers O and its
residue field O/P = F,. Now suppose that G is a “nice” reductive group. In particular, suppose that G
is a connected, split reductive group over k. For example, G(k) = SL,, (k) for n > 2.

Consider the group homomorphism ¢: G(O) — G(O/P) = G(F,) given by

&((9i5)ij=1,...n) — (n(Gi5))ij=1,....n»

where n: O — O/P is the natural map = — = + P. The map ¢ amounts to applying the natural map to
each entry of the matrix. Then the Twahori subgroup of G(O) is I := ¢~ 1(B(F,)).

As an example, if k = F4((t)), the natural map n is the evaluation map ¢ — 0, and the map ¢ will evaluate
the entries at t = 0. For a matrix to lie in the preimage of B(F,), its entries below the diagonal must have
a constant term of 0, the entries on the diagonal must have a non-zero constant term, and the entries
above the diagonal may be chosen freely. Then
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In fact, this characterises the Iwahori subgroup for any non-archimedian local field. We require that the
elements below the diagonal vanish under ¢, so they must lie in P. The diagonal elements must map to
a non-zero element under ¢, so they must lie in O*. We have no restriction on the elements above the
diagonal, so they lie in O.

5.5. The Iwahori-Hecke algebra C.(/\G/I). Take G = G(k) and I as defined above. Then the Iwahori—
Hecke algebra is given by C.(I\G/I) in the notation of Section 4.2.

We will see that the Iwahori-Hecke algebra contains a subalgebra we are already familiar with. Namely,
consider the Hecke algebra C.(I\G(O)/I). This is clearly a subalgebra of the Iwahori-Hecke algebra;
these are the functions in C,(I\G/I) that are supported on G(O).

Recall the Hecke algebra H(G, B) of Chapter 3. These are the complex-valued functions on G(F,) =
SL,(FF,) that are constant on B-double cosets. In the notation of Chapter 4, this algebra may also be
written as C.(B(F,)\G(F,)/B(Fy)).

Recall the map ¢: G(O) — G(F,) given in Section 5.4. Take f in C.(B(F,)\G(F,)/B(F,)) and consider
the pullback of f by ¢, given by ¢*f := f o ¢. This is now a function G(O) — C. Then we have the
following proposition:

Proposition 25. The map
¢": Ce(B(F\G(Fy)/B(Fy)) = C(ING(O)/1), ¢"f:=fod

is an algebra isomorphism.

Proof (Sketch). We must check that the image of ¢* lies in C.(I\G(O)/I). To this end, let 4,7 € I and
g € G(O). Then

(6" f)(igi') = f(eligi')) = f(e(D)d(9)e(i")) = f(d(g)) = (¢"f)(9),

since ¢(i) € B(F,) by the definition of I, and f is invariant on B(F,)-double cosets. It is an exercise to
show that ¢* f has compact support.

Next, the map ¢* is clearly linear. Furthermore, it is easy to see that ker ¢* is trivial since f o ¢ = 0 is
only satisfied by the constant map f = 0. The spaces C.(B(F,)\G(F,)/B(F,)) and C.(I\G(O)/I) have
the same dimension because they both have a basis parameterised by the Weyl group. Then ¢* is an
isomorphism of vector spaces.

Lastly, we must check that ¢* preserves the algebra multiplication. To see this, take two maps f, f’ €
C.(B(Fy)\G(F,)/B(F;)) and an element x € G(O). Then

(¢*f*¢*f’)(x)Z/Gf(cb(wg))f’(qﬁ(g_l)) du(g)= Y f(o(xg)f (d(g™")

9€G(Fq)

= Y W) = (Fxf)(¢) =¢"(f* f)(x). O
yz=9¢(z)
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5.6. The Iwahori-Matsumoto presentation. We conclude this thesis with a presentation of the Iwahori-
Hecke algebra called the Iwahori-Matsumoto presentation [HP02, MS21, Pra05, Bum10].

Recall that G(k) is a “nice” reductive group, e.g. G(k) = SL, (k) where n > 2. Fix a maximal split
torus A in G. If G(k) = SL,(k), then we may choose A to be the subgroup of diagonal matrices. Let
X*(A) := Hom,e(A, G,,) denote the rational characters of A, and let X,(A) := Hom,(Gy,, A) denote
the rational cocharacters of A, where Hom,), denotes the space of algebraic homomorphisms. Here G, is the
one-dimensional torus over k. Specifically, G,, is isomorphic to the group scheme Spec(k[t,¢t~1]). If one is
not familiar with these notions, one can think of G, as the multiplicative group k*.

Given a rational character A € X*(A) and a rational cocharacter ;1 € X,(A), their composition is an
endomorphism of G, of the form z — z*. This yields a bilinear map

(,): X*(A) x X (A) = Z
defined by (A, 1) := k, where k is given above.
The affine Weyl group of G is the quotient group W = Ne ) (A)/A(O). One may show that w may be
written as W = 57 X W, where W is the Weyl group of G [Hum90]. Recall from Section 3.1 that

©)
if G = SL,41 then W = S, . The Weyl group is a Coxeter group with simple reflections S = {s; =

(ti+1)|2=1,...,7}. We can consider these simple reflections as elements of SL,1; by writing
I 4
0 1
S; =
-1 0
Irfi
Similarly, the affine Weyl group has the generators S = {s0,81,...,8-}, Wwhere s1,..., s, are as before,

and sy is given by

S0 = I
(_1)7‘+1w

This generator is understood as an element of N¢(1)(4)/A(O). Then we have

W:<80,...,Sr

We can define the length function on the Weyl group W with associated generators S. This is the map

s? =1,
Si8i+15i = Si+15iSi+1, .
SZ'SJ' = SjSZ'

l: W — Z> given by l[(w) = k, where k is the smallest integer such that w = s1s2- - - s, where s; € S.
It is seen in [Bum10] that this map is well-defined and unique. The definition of I clearly extends to the
affine Weyl group W and its generators S.

Now we may present the Iwahori-Matsumoto presentation of the Iwahori-Hecke algebra. The Iwahori-
Hecke algebra has the basis {T;, | w € W} subject to the multiplication relations

T? = (q— )Ty +q, ifs € s,
TwTw’ = Tww’, if l(ww,) = l(w) + l(w,)
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