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Historical Group Theory

Since antiquity, mathematicians have been concerned with solving
polynomial equations.

e Degree n=1, ax+ b= 0: Clear

e Degree n =2, ax? + bx 4+ ¢ = 0: Quadratic equation

e Degree n =3, ax3 + bx?> + cx + d = 0: Cardano’s formula

o Degree n = 4, ax* + bx® + cx?> 4 dx + e = 0: Ferrari's method

What about degree n > 57

In the early 19th century,
Evariste Galois developed
fundamental concepts of group
theory to answer this question.




Groups and symmetry

e Galois understood that the roots of a polynomial equation
possessed a certain symmetry.

e He came up with the idea of a Galois group to describe the
symmetry of the roots.

e Soon after, the modern definition of a group was established.

Examples of groups are:
(5,”0)’ (Zn7+)7 (Z7+)7 (R+7 X)7

(GLA(R), %), (On(R), x).



Groups in the real world

Some geometric examples of groups are the dihedral groups. The
dihedral group Dy, is the set of 2m symmetries associated to the

m-gon, with the group operation being composition of symmetries.
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The dihedral group’s action on the m-gon serves as example of a

group acting on a geometric object.

This gives us an intuitive understanding of groups: they encode

the symmetries of physical and mathematical objects.



Representations of groups

Definition
Consider a group G and a vector space V. We say that

p: G—GL(V)is a of Gon Vifpisa
homomorphism of groups.

e The elements p(g) are on V.
e Homomorphisms preserve the structure of G.
e We can study these elements with

For example, let G = S3, and V = C3. Then GL(V) = GL3(C).
If s1 =(12)and s, =(23), then we may write
010 100
pst)=11 0 0f, p(2)=10 0 1
0 01 010



Constructing representations

e If K is a subgroup of a finite group G, then we can use
representations of K to build representations of G via a
procedure called induction.

e The representation of K that always exists is the trivial
representation, i.e. the homomorphism 1: K — C* given by
1(k)=1€C.

e We denote the induced representation by Ind;G< 1.



Irreducible representations as building blocks

We like to decompose representations into their irreducible
components. These irreducible representations are the building
blocks of all other representations.

Mashcke's theorem says, since Indf< 1 is a complex representation
of the finite group G, then

Ind§ 1 = @ Vi,
=

where each V; is irreducible. We say that Indﬁ 1 is multiplicity-free
if V; 2V, foreach i # j.

To investigate the induced representation Indﬁ 1, we need the
Hecke algebra.



The Hecke algebra

H(G, K) is the space of complex-valued functions on G that are
K-bi-invariant. Explicitly,

H(G,K):={f: G— C | f(kgk') = f(g) Vg € G, k, k' € K}.

This forms an algebra under the convolution product

(Fxf)g) =Y FO)f(y)=>_ Ffle)f'(x ).

Xy=8 xeG

Proposition

Indfé 1 is multiplicity-free if and only if H(G, K) is commutative.



Gelfand pairs

We call a pair of groups (G, K) is a Gelfand pair if the induced
representation Indﬁ 1 is multiplicity free.

Examples of Gelfand pairs:

(G, K) with G abelian,
e (GxG,G),
. (

(

0n11(Fgq),0n(Fgq)) with g # 2%, and
m+n75 X S )

To prove that these are Gelfand pairs, we can use the following
theorem:
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Gelfand pairs

Theorem (Gelfand’s Trick)
Let ¢: G — G be a map such that

(i) w(ab) = »(b)¢(a),

(ii) ¢ is a bijection,

(i) ? = Idg, and

(iv) Ke(x)K = KxK for all x € G.

Then H(G, K) is commutative.

We often consider p(x) = x~1, and for matrix groups, ¢(x) = x*.
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A non-commutative Hecke algebra

Fix G = GLo(Fg) and B = B(Fy), the subgroup of
upper-triangular matrices in G.

G has the Bruhat decomposition

F, F F, F
G:|_|BWB:B|_|BSB: R I R
0

weS, Fq F; Fq

The Hecke algebra H(G, B) has a basis {xsg, X8558}
Set | := xg and T := xgsg. We find that H(G, B) has the

following presentation

H(G,B)=(T | T>=(q—1)T +ql).
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A non-commutative Hecke algebra

If G =GL3(Fq) and B = B(Fq), we find that (G, B) has the

presentation

(G, B) = <T,5 T =(9- ;

S?2=(q-—

Associate T to >< [ and S to [

>< Then
-
S
-

. TST = 5T5> .
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A non-commutative Hecke algebra

If G = GL4(Fq) and B = B(Fq), we find that (G, B) has the
presentation

T?=(q—-1)T;i+4ql,

1
TiTizaTi= TigaTiTiga, > .

H(G,B) = <T1, T2, T3
T173=T37T;

We recall a standard presentation of Sy,

GF =1l

1
SiSi+1Si = Si+1S5iSi+15 /-

5153 = S351

S4 = <S1752,53

S, is actually the Weyl group of GL,,!
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A non-commutative Hecke algebra

Sy has the associated Coxeter matrix M = (mj;) given by
1, ifi=j,
mj =<3, if|i—j=1,
2, else.

Then S, has the Coxeter presentation

2 _
si =1,
515+, 5n—1 SiSiSj ... = SjSiSj . ..
2 L
mj; terms mj; terms

If G = GL,(Fq) and B = B(FFq) then 7(G, B) has the presentation

T2=(q—1)Ti+adl,

1

H(G,B)=<Tlv---,Tn—1 TTTi...=TTiT... )

mj; terms mj; terms 15



Generalising H to non-finite groups

We can weaken our condition that G is finite to the condition that
G is a locally compact topological group. For instance, G = R”,
GL,(R) or GL,(F), for a non-archemedian local field F.

Take an open and compact subgroup K of G. Then the Hecke
algebra is the space

C(K\G/K):={f: G — C | f(kgk') = f(g), suppf is compact}.

This forms an algebra under the convolution product

(F % F)(x) = /G F(xg)f' (&™) du(e).
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Further research: the spherical Hecke algebra

Fix a F (e.g. F =Qp or Fy((t)).
Associated to F is its O (e.g. if F =Qp then

O = Zp, if F =Fg((t)) then O =F4[t]).

Consider G = GL,(F) and K = GL,(O). Then the spherical Hecke
algebra is C.(K\G/K).

Theorem

The spherical Hecke algebra C.(K\G/K) is commutative.

Proof

We apply Gelfand’s Trick with the map ¢: G — G given by
©(g) = g*. The p-adic Cartan decomposition tells us all
K-double cosets have a diagonal representative. Then ¢ is
constant on this representative, so Kp(x)K = KxK.
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Further research: the lwahori—-Hecke algebra

Now consider G = GL,(O). We may quotient O by its unique
maximal ideal P. Then O/P = F,.

Then there is a map
¢: GL,(O) = GL,(O/P) = GL,(Fy)

given by

(&ij)ij=1,..n — (& + P)ij=1,..n-
Then the Iwahori subgroup of GL,(O) is I := ¢~ 1(B(Fy)).
The Iwahori—-Hecke algebra is the Hecke algebra C.(/\G/I).

18



References

e [ie Groups, Daniel Bump, Springer-Verlag, New York, 2013.

e Hecke Algebras, Daniel Bump,
http://sporadic.stanford.edu/bump/math263/hecke.pdf,
2010.

e Gelfand Triples and Their Hecke Algebras: Harmonic Analysis
for Multiplicity-Free Induced Representations of Finite Groups,
Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F., Lecture
Notes in Mathematics, 2020, Springer International
Publishing.

o Algebraic Number Theory (v3.08), James S. Milne,
www. jmilne.org/math/, 2020.

19



